{"id":"https://openalex.org/W3168851091","doi":"https://doi.org/10.1109/tits.2021.3084058","title":"An End-to-End Multi-Task Learning Model for Drivable Road Detection via Edge Refinement and Geometric Deformation","display_name":"An End-to-End Multi-Task Learning Model for Drivable Road Detection via Edge Refinement and Geometric Deformation","publication_year":2021,"publication_date":"2021-06-08","ids":{"openalex":"https://openalex.org/W3168851091","doi":"https://doi.org/10.1109/tits.2021.3084058","mag":"3168851091"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/tits.2021.3084058","pdf_url":null,"source":{"id":"https://openalex.org/S144771191","display_name":"IEEE Transactions on Intelligent Transportation Systems","issn_l":"1524-9050","issn":["1524-9050","1558-0016"],"is_oa":false,"is_in_doaj":false,"is_core":true,"host_organization":"https://openalex.org/P4310319808","host_organization_name":"Institute of Electrical and Electronics Engineers","host_organization_lineage":["https://openalex.org/P4310319808"],"host_organization_lineage_names":["Institute of Electrical and Electronics Engineers"],"type":"journal"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"journal-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5031855986","display_name":"Keqiang Li","orcid":"https://orcid.org/0000-0002-9333-7416"},"institutions":[{"id":"https://openalex.org/I99065089","display_name":"Tsinghua University","ror":"https://ror.org/03cve4549","country_code":"CN","type":"education","lineage":["https://openalex.org/I99065089"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Keqiang Li","raw_affiliation_strings":["State Key Laboratory of Automotive Safety and Energy, School of Vehicle and Mobility, Tsinghua University, Beijing, China"],"affiliations":[{"raw_affiliation_string":"State Key Laboratory of Automotive Safety and Energy, School of Vehicle and Mobility, Tsinghua University, Beijing, China","institution_ids":["https://openalex.org/I99065089"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5021568693","display_name":"Hui Xiong","orcid":"https://orcid.org/0000-0001-6556-2299"},"institutions":[{"id":"https://openalex.org/I99065089","display_name":"Tsinghua University","ror":"https://ror.org/03cve4549","country_code":"CN","type":"education","lineage":["https://openalex.org/I99065089"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Hui Xiong","raw_affiliation_strings":["State Key Laboratory of Automotive Safety and Energy, School of Vehicle and Mobility, Tsinghua University, Beijing, China"],"affiliations":[{"raw_affiliation_string":"State Key Laboratory of Automotive Safety and Energy, School of Vehicle and Mobility, Tsinghua University, Beijing, China","institution_ids":["https://openalex.org/I99065089"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5101009932","display_name":"Dameng Yu","orcid":null},"institutions":[{"id":"https://openalex.org/I99065089","display_name":"Tsinghua University","ror":"https://ror.org/03cve4549","country_code":"CN","type":"education","lineage":["https://openalex.org/I99065089"]},{"id":"https://openalex.org/I2250955327","display_name":"Huawei Technologies (China)","ror":"https://ror.org/00cmhce21","country_code":"CN","type":"company","lineage":["https://openalex.org/I2250955327"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Dameng Yu","raw_affiliation_strings":["Huawei Technologies Company Ltd., Shanghai, China","State Key Laboratory of Automotive Safety and Energy, School of Vehicle and Mobility, Tsinghua University, Beijing, China"],"affiliations":[{"raw_affiliation_string":"State Key Laboratory of Automotive Safety and Energy, School of Vehicle and Mobility, Tsinghua University, Beijing, China","institution_ids":["https://openalex.org/I99065089"]},{"raw_affiliation_string":"Huawei Technologies Company Ltd., Shanghai, China","institution_ids":["https://openalex.org/I2250955327"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5100386972","display_name":"Jinxin Liu","orcid":"https://orcid.org/0000-0001-7217-3611"},"institutions":[{"id":"https://openalex.org/I99065089","display_name":"Tsinghua University","ror":"https://ror.org/03cve4549","country_code":"CN","type":"education","lineage":["https://openalex.org/I99065089"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Jinxin Liu","raw_affiliation_strings":["State Key Laboratory of Automotive Safety and Energy, School of Vehicle and Mobility, Tsinghua University, Beijing, China"],"affiliations":[{"raw_affiliation_string":"State Key Laboratory of Automotive Safety and Energy, School of Vehicle and Mobility, Tsinghua University, Beijing, China","institution_ids":["https://openalex.org/I99065089"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5077178461","display_name":"Yu-ang Guo","orcid":"https://orcid.org/0000-0002-8339-2737"},"institutions":[{"id":"https://openalex.org/I82880672","display_name":"Beihang University","ror":"https://ror.org/00wk2mp56","country_code":"CN","type":"education","lineage":["https://openalex.org/I82880672"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Yu'ang Guo","raw_affiliation_strings":["Key Laboratory of Autonomous Transportation Technology for Special Vehicles, School of Transportation Science and Engineering, Beihang University, Beijing, China"],"affiliations":[{"raw_affiliation_string":"Key Laboratory of Autonomous Transportation Technology for Special Vehicles, School of Transportation Science and Engineering, Beihang University, Beijing, China","institution_ids":["https://openalex.org/I82880672"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5100436368","display_name":"Jianqiang Wang","orcid":"https://orcid.org/0000-0003-4363-6108"},"institutions":[{"id":"https://openalex.org/I99065089","display_name":"Tsinghua University","ror":"https://ror.org/03cve4549","country_code":"CN","type":"education","lineage":["https://openalex.org/I99065089"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Jianqiang Wang","raw_affiliation_strings":["State Key Laboratory of Automotive Safety and Energy, School of Vehicle and Mobility, Tsinghua University, Beijing, China"],"affiliations":[{"raw_affiliation_string":"State Key Laboratory of Automotive Safety and Energy, School of Vehicle and Mobility, Tsinghua University, Beijing, China","institution_ids":["https://openalex.org/I99065089"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":3,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":1.225,"has_fulltext":false,"cited_by_count":12,"citation_normalized_percentile":{"value":0.999939,"is_in_top_1_percent":true,"is_in_top_10_percent":true},"cited_by_percentile_year":{"min":89,"max":90},"biblio":{"volume":"23","issue":"7","first_page":"8641","last_page":"8651"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10036","display_name":"Advanced Neural Network Applications","score":0.9998,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10036","display_name":"Advanced Neural Network Applications","score":0.9998,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11099","display_name":"Autonomous Vehicle Technology and Safety","score":0.9997,"subfield":{"id":"https://openalex.org/subfields/2203","display_name":"Automotive Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T13282","display_name":"Automated Road and Building Extraction","score":0.9984,"subfield":{"id":"https://openalex.org/subfields/2212","display_name":"Ocean Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/benchmark","display_name":"Benchmark (surveying)","score":0.6131902},{"id":"https://openalex.org/keywords/end-to-end-principle","display_name":"End-to-end principle","score":0.6099971}],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.69124156},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.6657701},{"id":"https://openalex.org/C185798385","wikidata":"https://www.wikidata.org/wiki/Q1161707","display_name":"Benchmark (surveying)","level":2,"score":0.6131902},{"id":"https://openalex.org/C74296488","wikidata":"https://www.wikidata.org/wiki/Q2527392","display_name":"End-to-end principle","level":2,"score":0.6099971},{"id":"https://openalex.org/C81363708","wikidata":"https://www.wikidata.org/wiki/Q17084460","display_name":"Convolutional neural network","level":2,"score":0.5970445},{"id":"https://openalex.org/C108583219","wikidata":"https://www.wikidata.org/wiki/Q197536","display_name":"Deep learning","level":2,"score":0.5862261},{"id":"https://openalex.org/C89600930","wikidata":"https://www.wikidata.org/wiki/Q1423946","display_name":"Segmentation","level":2,"score":0.5403749},{"id":"https://openalex.org/C31972630","wikidata":"https://www.wikidata.org/wiki/Q844240","display_name":"Computer vision","level":1,"score":0.5178933},{"id":"https://openalex.org/C2780451532","wikidata":"https://www.wikidata.org/wiki/Q759676","display_name":"Task (project management)","level":2,"score":0.49508372},{"id":"https://openalex.org/C162307627","wikidata":"https://www.wikidata.org/wiki/Q204833","display_name":"Enhanced Data Rates for GSM Evolution","level":2,"score":0.4692642},{"id":"https://openalex.org/C192209626","wikidata":"https://www.wikidata.org/wiki/Q190909","display_name":"Focus (optics)","level":2,"score":0.44564074},{"id":"https://openalex.org/C204241405","wikidata":"https://www.wikidata.org/wiki/Q461499","display_name":"Transformation (genetics)","level":3,"score":0.4394384},{"id":"https://openalex.org/C127413603","wikidata":"https://www.wikidata.org/wiki/Q11023","display_name":"Engineering","level":0,"score":0.22934419},{"id":"https://openalex.org/C55493867","wikidata":"https://www.wikidata.org/wiki/Q7094","display_name":"Biochemistry","level":1,"score":0.0},{"id":"https://openalex.org/C185592680","wikidata":"https://www.wikidata.org/wiki/Q2329","display_name":"Chemistry","level":0,"score":0.0},{"id":"https://openalex.org/C121332964","wikidata":"https://www.wikidata.org/wiki/Q413","display_name":"Physics","level":0,"score":0.0},{"id":"https://openalex.org/C13280743","wikidata":"https://www.wikidata.org/wiki/Q131089","display_name":"Geodesy","level":1,"score":0.0},{"id":"https://openalex.org/C201995342","wikidata":"https://www.wikidata.org/wiki/Q682496","display_name":"Systems engineering","level":1,"score":0.0},{"id":"https://openalex.org/C120665830","wikidata":"https://www.wikidata.org/wiki/Q14620","display_name":"Optics","level":1,"score":0.0},{"id":"https://openalex.org/C104317684","wikidata":"https://www.wikidata.org/wiki/Q7187","display_name":"Gene","level":2,"score":0.0},{"id":"https://openalex.org/C205649164","wikidata":"https://www.wikidata.org/wiki/Q1071","display_name":"Geography","level":0,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/tits.2021.3084058","pdf_url":null,"source":{"id":"https://openalex.org/S144771191","display_name":"IEEE Transactions on Intelligent Transportation Systems","issn_l":"1524-9050","issn":["1524-9050","1558-0016"],"is_oa":false,"is_in_doaj":false,"is_core":true,"host_organization":"https://openalex.org/P4310319808","host_organization_name":"Institute of Electrical and Electronics Engineers","host_organization_lineage":["https://openalex.org/P4310319808"],"host_organization_lineage_names":["Institute of Electrical and Electronics Engineers"],"type":"journal"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[{"id":"https://metadata.un.org/sdg/11","score":0.8,"display_name":"Sustainable cities and communities"}],"grants":[{"funder":"https://openalex.org/F4320321001","funder_display_name":"National Natural Science Foundation of China","award_id":"52072214"},{"funder":"https://openalex.org/F4320321001","funder_display_name":"National Natural Science Foundation of China","award_id":"61790561"}],"datasets":[],"versions":[],"referenced_works_count":44,"referenced_works":["https://openalex.org/W1569925765","https://openalex.org/W1686810756","https://openalex.org/W1903029394","https://openalex.org/W1966931935","https://openalex.org/W2037333893","https://openalex.org/W2097117768","https://openalex.org/W2115340290","https://openalex.org/W2121955477","https://openalex.org/W2138361487","https://openalex.org/W2161969291","https://openalex.org/W2167222293","https://openalex.org/W2168519618","https://openalex.org/W2184393491","https://openalex.org/W2194775991","https://openalex.org/W2332618872","https://openalex.org/W2412782625","https://openalex.org/W2413473068","https://openalex.org/W2465597433","https://openalex.org/W2505004417","https://openalex.org/W2561721180","https://openalex.org/W2562137921","https://openalex.org/W2592939477","https://openalex.org/W2764012408","https://openalex.org/W2768567874","https://openalex.org/W2792727293","https://openalex.org/W2807508600","https://openalex.org/W2809446072","https://openalex.org/W2898033983","https://openalex.org/W2900172222","https://openalex.org/W2905123719","https://openalex.org/W2919115771","https://openalex.org/W2952956594","https://openalex.org/W2963324806","https://openalex.org/W2963591855","https://openalex.org/W2970048031","https://openalex.org/W2972887266","https://openalex.org/W2979557878","https://openalex.org/W2995822855","https://openalex.org/W3003541775","https://openalex.org/W3024167159","https://openalex.org/W3077024029","https://openalex.org/W3088884252","https://openalex.org/W3105556985","https://openalex.org/W4244914727"],"related_works":["https://openalex.org/W972276598","https://openalex.org/W4321353415","https://openalex.org/W4312417841","https://openalex.org/W4226493464","https://openalex.org/W3193565141","https://openalex.org/W3167935049","https://openalex.org/W3133861977","https://openalex.org/W3029198973","https://openalex.org/W2378211422","https://openalex.org/W2130974462"],"abstract_inverted_index":{"This":[0],"paper":[1],"presents":[2],"a":[3,32,63,89,94,112],"road":[4,26,45,64,108,118,138],"detection":[5],"method":[6,18,69,129],"for":[7],"autonomous":[8],"driving":[9],"based":[10],"on":[11,49,55,84,145],"an":[12],"end-to-end":[13],"neural":[14],"network":[15,75,99],"model.":[16],"Our":[17],"takes":[19],"advantage":[20],"of":[21,25,31,44,52,93],"both":[22],"the":[23,38,42,50,56,74,127,132,146],"characteristics":[24],"boundary":[27,57],"and":[28,40,100,120,142],"multi-task":[29],"learning":[30,51,114],"deep":[33,96],"convolutional":[34],"network.":[35],"By":[36],"reassigning":[37],"label":[39],"rebalancing":[41],"loss":[43],"pixels,":[46],"we":[47],"focus":[48],"hard":[53],"examples":[54],"to":[58,72,77,116],"refine":[59],"its":[60],"performance.":[61,152],"Then,":[62],"geometric":[65],"transformation-based":[66],"data":[67],"augmentation":[68],"is":[70,104],"proposed":[71,128],"enable":[73],"model":[76],"be":[78],"robust":[79],"under":[80],"traffic":[81],"scenes.":[82,139],"Based":[83],"these":[85],"two":[86],"novel":[87],"methods,":[88],"unified":[90],"architecture":[91],"consisting":[92],"shared":[95],"residual":[97],"encoder":[98],"multi-branch":[101],"decoder":[102],"sub-networks":[103],"integrated.":[105],"It":[106],"adopts":[107],"scene":[109,121],"classification":[110,122],"as":[111],"supervised":[113],"task":[115],"realize":[117],"segmentation":[119],"simultaneously.":[123],"Experiments":[124],"demonstrate":[125,149],"that":[126],"has":[130],"achieved":[131],"highest":[133],"MaxF":[134],"value":[135],"in":[136],"most":[137],"Both":[140],"qualitative":[141],"quantitative":[143],"evaluations":[144],"KITTI-Road":[147],"benchmark":[148],"our":[150],"superior":[151]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W3168851091","counts_by_year":[{"year":2024,"cited_by_count":4},{"year":2023,"cited_by_count":1},{"year":2022,"cited_by_count":4},{"year":2021,"cited_by_count":2}],"updated_date":"2024-12-13T13:57:59.677335","created_date":"2021-06-22"}