{"id":"https://openalex.org/W2789406905","doi":"https://doi.org/10.1109/tits.2018.2812147","title":"Online Map Matching With Route Prediction","display_name":"Online Map Matching With Route Prediction","publication_year":2018,"publication_date":"2018-03-19","ids":{"openalex":"https://openalex.org/W2789406905","doi":"https://doi.org/10.1109/tits.2018.2812147","mag":"2789406905"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/tits.2018.2812147","pdf_url":null,"source":{"id":"https://openalex.org/S144771191","display_name":"IEEE Transactions on Intelligent Transportation Systems","issn_l":"1524-9050","issn":["1524-9050","1558-0016"],"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":true,"is_core":true,"host_organization":"https://openalex.org/P4310319808","host_organization_name":"Institute of Electrical and Electronics Engineers","host_organization_lineage":["https://openalex.org/P4310319808"],"host_organization_lineage_names":["Institute of Electrical and Electronics Engineers"],"type":"journal"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"journal-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5054754593","display_name":"Shun Taguchi","orcid":"https://orcid.org/0000-0002-1612-6121"},"institutions":[{"id":"https://openalex.org/I4210165351","display_name":"Toyota Central Research and Development Laboratories (Japan)","ror":"https://ror.org/05mjgqe69","country_code":"JP","type":"company","lineage":["https://openalex.org/I4210125472","https://openalex.org/I4210165351"]}],"countries":["JP"],"is_corresponding":false,"raw_author_name":"Shun Taguchi","raw_affiliation_strings":["Toyota Central R&D Labs., Inc., Nagakute, Japan"],"affiliations":[{"raw_affiliation_string":"Toyota Central R&D Labs., Inc., Nagakute, Japan","institution_ids":["https://openalex.org/I4210165351"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5009788491","display_name":"Satoshi Koide","orcid":"https://orcid.org/0000-0002-8214-3122"},"institutions":[{"id":"https://openalex.org/I4210165351","display_name":"Toyota Central Research and Development Laboratories (Japan)","ror":"https://ror.org/05mjgqe69","country_code":"JP","type":"company","lineage":["https://openalex.org/I4210125472","https://openalex.org/I4210165351"]}],"countries":["JP"],"is_corresponding":false,"raw_author_name":"Satoshi Koide","raw_affiliation_strings":["Toyota Central R&D Labs., Inc., Nagakute, Japan"],"affiliations":[{"raw_affiliation_string":"Toyota Central R&D Labs., Inc., Nagakute, Japan","institution_ids":["https://openalex.org/I4210165351"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5101886410","display_name":"Takayoshi Yoshimura","orcid":"https://orcid.org/0000-0002-1812-6491"},"institutions":[{"id":"https://openalex.org/I4210165351","display_name":"Toyota Central Research and Development Laboratories (Japan)","ror":"https://ror.org/05mjgqe69","country_code":"JP","type":"company","lineage":["https://openalex.org/I4210125472","https://openalex.org/I4210165351"]}],"countries":["JP"],"is_corresponding":false,"raw_author_name":"Takayoshi Yoshimura","raw_affiliation_strings":["Toyota Central R&D Labs., Inc., Nagakute, Japan"],"affiliations":[{"raw_affiliation_string":"Toyota Central R&D Labs., Inc., Nagakute, Japan","institution_ids":["https://openalex.org/I4210165351"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":1,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":5.391,"has_fulltext":true,"fulltext_origin":"ngrams","cited_by_count":53,"citation_normalized_percentile":{"value":0.821486,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":96,"max":97},"biblio":{"volume":"20","issue":"1","first_page":"338","last_page":"347"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T11344","display_name":"Traffic Prediction and Management Techniques","score":0.9992,"subfield":{"id":"https://openalex.org/subfields/2215","display_name":"Building and Construction"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T11344","display_name":"Traffic Prediction and Management Techniques","score":0.9992,"subfield":{"id":"https://openalex.org/subfields/2215","display_name":"Building and Construction"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11106","display_name":"Data Management and Algorithms","score":0.999,"subfield":{"id":"https://openalex.org/subfields/1711","display_name":"Signal Processing"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11980","display_name":"Human Mobility and Location-Based Analysis","score":0.997,"subfield":{"id":"https://openalex.org/subfields/3313","display_name":"Transportation"},"field":{"id":"https://openalex.org/fields/33","display_name":"Social Sciences"},"domain":{"id":"https://openalex.org/domains/2","display_name":"Social Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/map-matching","display_name":"Map matching","score":0.91413456}],"concepts":[{"id":"https://openalex.org/C2778559875","wikidata":"https://www.wikidata.org/wiki/Q1892023","display_name":"Map matching","level":3,"score":0.91413456},{"id":"https://openalex.org/C23224414","wikidata":"https://www.wikidata.org/wiki/Q176769","display_name":"Hidden Markov model","level":2,"score":0.8410033},{"id":"https://openalex.org/C60229501","wikidata":"https://www.wikidata.org/wiki/Q18822","display_name":"Global Positioning System","level":2,"score":0.8100568},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.73121136},{"id":"https://openalex.org/C49937458","wikidata":"https://www.wikidata.org/wiki/Q2599292","display_name":"Probabilistic logic","level":2,"score":0.6714142},{"id":"https://openalex.org/C82876162","wikidata":"https://www.wikidata.org/wiki/Q17096504","display_name":"Latency (audio)","level":2,"score":0.65908766},{"id":"https://openalex.org/C165064840","wikidata":"https://www.wikidata.org/wiki/Q1321061","display_name":"Matching (statistics)","level":2,"score":0.5690259},{"id":"https://openalex.org/C34736171","wikidata":"https://www.wikidata.org/wiki/Q918333","display_name":"Preprocessor","level":2,"score":0.51337326},{"id":"https://openalex.org/C13662910","wikidata":"https://www.wikidata.org/wiki/Q193139","display_name":"Trajectory","level":2,"score":0.5011606},{"id":"https://openalex.org/C124101348","wikidata":"https://www.wikidata.org/wiki/Q172491","display_name":"Data mining","level":1,"score":0.46605548},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.43942878},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.08828378},{"id":"https://openalex.org/C105795698","wikidata":"https://www.wikidata.org/wiki/Q12483","display_name":"Statistics","level":1,"score":0.08556259},{"id":"https://openalex.org/C76155785","wikidata":"https://www.wikidata.org/wiki/Q418","display_name":"Telecommunications","level":1,"score":0.0},{"id":"https://openalex.org/C121332964","wikidata":"https://www.wikidata.org/wiki/Q413","display_name":"Physics","level":0,"score":0.0},{"id":"https://openalex.org/C1276947","wikidata":"https://www.wikidata.org/wiki/Q333","display_name":"Astronomy","level":1,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/tits.2018.2812147","pdf_url":null,"source":{"id":"https://openalex.org/S144771191","display_name":"IEEE Transactions on Intelligent Transportation Systems","issn_l":"1524-9050","issn":["1524-9050","1558-0016"],"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":true,"is_core":true,"host_organization":"https://openalex.org/P4310319808","host_organization_name":"Institute of Electrical and Electronics Engineers","host_organization_lineage":["https://openalex.org/P4310319808"],"host_organization_lineage_names":["Institute of Electrical and Electronics Engineers"],"type":"journal"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":40,"referenced_works":["https://openalex.org/W112851683","https://openalex.org/W119332707","https://openalex.org/W1514900972","https://openalex.org/W1544411027","https://openalex.org/W1584135055","https://openalex.org/W1969483458","https://openalex.org/W1995103535","https://openalex.org/W2009139002","https://openalex.org/W2020602155","https://openalex.org/W2031674781","https://openalex.org/W2041501777","https://openalex.org/W2049626361","https://openalex.org/W2067828570","https://openalex.org/W2082585239","https://openalex.org/W2088061407","https://openalex.org/W2090227767","https://openalex.org/W2092363488","https://openalex.org/W2094283130","https://openalex.org/W2098774185","https://openalex.org/W2104432166","https://openalex.org/W2108779411","https://openalex.org/W2116140262","https://openalex.org/W2118269922","https://openalex.org/W2118770664","https://openalex.org/W2119539043","https://openalex.org/W2135822894","https://openalex.org/W2145022515","https://openalex.org/W2145457662","https://openalex.org/W2147880316","https://openalex.org/W2149799779","https://openalex.org/W2165666226","https://openalex.org/W2166771065","https://openalex.org/W2167999909","https://openalex.org/W2171959453","https://openalex.org/W2401054706","https://openalex.org/W2402542117","https://openalex.org/W2476863447","https://openalex.org/W4213009331","https://openalex.org/W4232464081","https://openalex.org/W658932148"],"related_works":["https://openalex.org/W3010912586","https://openalex.org/W2370431274","https://openalex.org/W2369446480","https://openalex.org/W2364370872","https://openalex.org/W2294335174","https://openalex.org/W2187159411","https://openalex.org/W2097963413","https://openalex.org/W2053269318","https://openalex.org/W2045922748","https://openalex.org/W2025614924"],"abstract_inverted_index":{"Map":[0],"matching":[1,43,87],"is":[2,19,45,126,158],"a":[3,83,91,129],"procedure":[4,23],"that":[5,89,118,141,154],"estimates":[6],"the":[7,46,62,71,119,122,138,142,155,161],"route":[8,93,103],"traveled":[9],"by":[10,14,109],"vehicles":[11],"or":[12],"people":[13],"using":[15,110],"observed":[16],"coordinates.":[17],"It":[18],"an":[20],"important":[21],"preprocessing":[22],"for":[24],"location":[25,78],"services":[26],"based":[27],"on":[28,61],"global":[29],"positioning":[30],"system":[31],"(GPS)":[32],"data":[33],"obtained":[34],"from":[35,56],"probe":[36],"vehicles.":[37],"One":[38],"recently":[39],"proposed":[40,124,156],"major":[41],"map":[42,86],"approach":[44],"hidden":[47],"Markov":[48],"model":[49,95,105,125,144],"(HMM)-based":[50],"method.":[51],"However,":[52],"HMM-based":[53,132],"approaches":[54],"suffer":[55],"latency,":[57],"because":[58],"they":[59],"rely":[60],"availability":[63],"of":[64,73,97,121],"future":[65,98],"GPS":[66,99],"points.":[67,100],"This":[68,80],"latency":[69],"limits":[70],"ability":[72],"real-time":[74],"traffic":[75],"sensing":[76],"and":[77],"services.":[79],"paper":[81],"presents":[82],"novel":[84],"online":[85,131,162],"algorithm":[88],"uses":[90],"probabilistic":[92,102],"prediction":[94,104],"instead":[96],"The":[101,149],"can":[106],"be":[107],"trained":[108,143],"historical":[111],"trajectory":[112],"data.":[113],"Our":[114],"experimental":[115,150],"results":[116,139,151],"show":[117,140,153],"accuracy":[120],"untrained":[123],"competitive":[127],"with":[128],"na\u00efve":[130],"method":[133,157],"without":[134],"any":[135],"latency.":[136],"Moreover,":[137],"obtains":[145],"even":[146],"higher":[147],"accuracy.":[148],"also":[152],"faster":[159],"than":[160],"HMM.":[163]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W2789406905","counts_by_year":[{"year":2024,"cited_by_count":4},{"year":2023,"cited_by_count":7},{"year":2022,"cited_by_count":12},{"year":2021,"cited_by_count":17},{"year":2020,"cited_by_count":6},{"year":2019,"cited_by_count":7}],"updated_date":"2025-03-18T07:17:46.327076","created_date":"2018-03-29"}