{"id":"https://openalex.org/W2477047852","doi":"https://doi.org/10.1109/tits.2016.2569159","title":"Pedestrian Tracking Using Online Boosted Random Ferns Learning in Far-Infrared Imagery for Safe Driving at Night","display_name":"Pedestrian Tracking Using Online Boosted Random Ferns Learning in Far-Infrared Imagery for Safe Driving at Night","publication_year":2016,"publication_date":"2016-08-10","ids":{"openalex":"https://openalex.org/W2477047852","doi":"https://doi.org/10.1109/tits.2016.2569159","mag":"2477047852"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/tits.2016.2569159","pdf_url":null,"source":{"id":"https://openalex.org/S144771191","display_name":"IEEE Transactions on Intelligent Transportation Systems","issn_l":"1524-9050","issn":["1524-9050","1558-0016"],"is_oa":false,"is_in_doaj":false,"is_core":true,"host_organization":"https://openalex.org/P4310319808","host_organization_name":"Institute of Electrical and Electronics Engineers","host_organization_lineage":["https://openalex.org/P4310319808"],"host_organization_lineage_names":["Institute of Electrical and Electronics Engineers"],"type":"journal"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"journal-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5048334474","display_name":"Joon-Young Kwak","orcid":null},"institutions":[{"id":"https://openalex.org/I52010207","display_name":"Keimyung University","ror":"https://ror.org/00tjv0s33","country_code":"KR","type":"education","lineage":["https://openalex.org/I52010207"]}],"countries":["KR"],"is_corresponding":false,"raw_author_name":"Joon-Young Kwak","raw_affiliation_strings":["Computer Vision and Pattern Recognition Laboratory, Keimyung University, Daegu, South Korea"],"affiliations":[{"raw_affiliation_string":"Computer Vision and Pattern Recognition Laboratory, Keimyung University, Daegu, South Korea","institution_ids":["https://openalex.org/I52010207"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5035256239","display_name":"Byoung Chul Ko","orcid":"https://orcid.org/0000-0002-7284-0768"},"institutions":[{"id":"https://openalex.org/I52010207","display_name":"Keimyung University","ror":"https://ror.org/00tjv0s33","country_code":"KR","type":"education","lineage":["https://openalex.org/I52010207"]}],"countries":["KR"],"is_corresponding":false,"raw_author_name":"Byoung Chul Ko","raw_affiliation_strings":["Computer Vision and Pattern Recognition Laboratory, Keimyung University, Daegu, South Korea"],"affiliations":[{"raw_affiliation_string":"Computer Vision and Pattern Recognition Laboratory, Keimyung University, Daegu, South Korea","institution_ids":["https://openalex.org/I52010207"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5108491711","display_name":"Jae Yeal Nam","orcid":null},"institutions":[{"id":"https://openalex.org/I52010207","display_name":"Keimyung University","ror":"https://ror.org/00tjv0s33","country_code":"KR","type":"education","lineage":["https://openalex.org/I52010207"]}],"countries":["KR"],"is_corresponding":false,"raw_author_name":"Jae Yeal Nam","raw_affiliation_strings":["Computer Vision and Pattern Recognition Laboratory, Keimyung University, Daegu, South Korea"],"affiliations":[{"raw_affiliation_string":"Computer Vision and Pattern Recognition Laboratory, Keimyung University, Daegu, South Korea","institution_ids":["https://openalex.org/I52010207"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":1,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":3.779,"has_fulltext":true,"fulltext_origin":"ngrams","cited_by_count":59,"citation_normalized_percentile":{"value":0.999935,"is_in_top_1_percent":true,"is_in_top_10_percent":true},"cited_by_percentile_year":{"min":96,"max":97},"biblio":{"volume":"18","issue":"1","first_page":"69","last_page":"81"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10331","display_name":"Video Surveillance and Tracking Methods","score":0.9999,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10331","display_name":"Video Surveillance and Tracking Methods","score":0.9999,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11963","display_name":"Impact of Light on Environment and Health","score":0.9958,"subfield":{"id":"https://openalex.org/subfields/2306","display_name":"Global and Planetary Change"},"field":{"id":"https://openalex.org/fields/23","display_name":"Environmental Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11164","display_name":"Remote Sensing and LiDAR Applications","score":0.9941,"subfield":{"id":"https://openalex.org/subfields/2305","display_name":"Environmental Engineering"},"field":{"id":"https://openalex.org/fields/23","display_name":"Environmental Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/bittorrent-tracker","display_name":"BitTorrent tracker","score":0.65865207},{"id":"https://openalex.org/keywords/tracking","display_name":"Tracking (education)","score":0.54200643},{"id":"https://openalex.org/keywords/pedestrian-crossing","display_name":"Pedestrian crossing","score":0.41024625}],"concepts":[{"id":"https://openalex.org/C2777113093","wikidata":"https://www.wikidata.org/wiki/Q221488","display_name":"Pedestrian","level":2,"score":0.7467146},{"id":"https://openalex.org/C31972630","wikidata":"https://www.wikidata.org/wiki/Q844240","display_name":"Computer vision","level":1,"score":0.67644876},{"id":"https://openalex.org/C57501372","wikidata":"https://www.wikidata.org/wiki/Q2021268","display_name":"BitTorrent tracker","level":3,"score":0.65865207},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.6554204},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.61697435},{"id":"https://openalex.org/C2775936607","wikidata":"https://www.wikidata.org/wiki/Q466845","display_name":"Tracking (education)","level":2,"score":0.54200643},{"id":"https://openalex.org/C177264268","wikidata":"https://www.wikidata.org/wiki/Q1514741","display_name":"Set (abstract data type)","level":2,"score":0.4399795},{"id":"https://openalex.org/C2777819797","wikidata":"https://www.wikidata.org/wiki/Q8010","display_name":"Pedestrian crossing","level":3,"score":0.41024625},{"id":"https://openalex.org/C56461940","wikidata":"https://www.wikidata.org/wiki/Q970687","display_name":"Eye tracking","level":2,"score":0.21951261},{"id":"https://openalex.org/C205649164","wikidata":"https://www.wikidata.org/wiki/Q1071","display_name":"Geography","level":0,"score":0.21479434},{"id":"https://openalex.org/C15744967","wikidata":"https://www.wikidata.org/wiki/Q9418","display_name":"Psychology","level":0,"score":0.0},{"id":"https://openalex.org/C19417346","wikidata":"https://www.wikidata.org/wiki/Q7922","display_name":"Pedagogy","level":1,"score":0.0},{"id":"https://openalex.org/C166957645","wikidata":"https://www.wikidata.org/wiki/Q23498","display_name":"Archaeology","level":1,"score":0.0},{"id":"https://openalex.org/C199360897","wikidata":"https://www.wikidata.org/wiki/Q9143","display_name":"Programming language","level":1,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/tits.2016.2569159","pdf_url":null,"source":{"id":"https://openalex.org/S144771191","display_name":"IEEE Transactions on Intelligent Transportation Systems","issn_l":"1524-9050","issn":["1524-9050","1558-0016"],"is_oa":false,"is_in_doaj":false,"is_core":true,"host_organization":"https://openalex.org/P4310319808","host_organization_name":"Institute of Electrical and Electronics Engineers","host_organization_lineage":["https://openalex.org/P4310319808"],"host_organization_lineage_names":["Institute of Electrical and Electronics Engineers"],"type":"journal"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":37,"referenced_works":["https://openalex.org/W1544640522","https://openalex.org/W1555647512","https://openalex.org/W1582048523","https://openalex.org/W1825108226","https://openalex.org/W1952910563","https://openalex.org/W1954270966","https://openalex.org/W1970537648","https://openalex.org/W1971616954","https://openalex.org/W1977578364","https://openalex.org/W2001239463","https://openalex.org/W2005181468","https://openalex.org/W2008785834","https://openalex.org/W2010811478","https://openalex.org/W2031454541","https://openalex.org/W2032210760","https://openalex.org/W204612701","https://openalex.org/W2055854460","https://openalex.org/W2060745441","https://openalex.org/W2061773916","https://openalex.org/W2070792402","https://openalex.org/W2095650263","https://openalex.org/W2097222246","https://openalex.org/W2115574509","https://openalex.org/W2117582570","https://openalex.org/W2121955477","https://openalex.org/W2125896931","https://openalex.org/W2127084114","https://openalex.org/W2131052232","https://openalex.org/W2133984628","https://openalex.org/W2166623283","https://openalex.org/W2169566837","https://openalex.org/W2222512263","https://openalex.org/W2269844376","https://openalex.org/W2315907656","https://openalex.org/W2534801473","https://openalex.org/W2859156748","https://openalex.org/W4244952642"],"related_works":["https://openalex.org/W842416910","https://openalex.org/W650967530","https://openalex.org/W4206403607","https://openalex.org/W2965864542","https://openalex.org/W2164690004","https://openalex.org/W2094698213","https://openalex.org/W2047776971","https://openalex.org/W187110833","https://openalex.org/W1486225309","https://openalex.org/W122740207"],"abstract_inverted_index":{"Pedestrian-vehicle":[0],"accidents":[1],"that":[2,16,65],"occur":[3],"at":[4,139,228],"night":[5],"are":[6,17,42,46,115],"a":[7,56,81,210],"major":[8],"social":[9],"problem":[10],"worldwide.":[11],"Advanced":[12],"driver":[13],"assistance":[14],"systems":[15],"equipped":[18],"with":[19,61,197],"cameras":[20,34,41],"have":[21],"been":[22],"designed":[23],"to":[24,48,68,104,108,128,148,236],"automatically":[25],"prevent":[26],"such":[27,37],"accidents.":[28],"Among":[29],"the":[30,76,84,88,94,97,109,112,137,166,176,185,242,245],"various":[31,237],"types":[32],"of":[33,80,241],"used":[35],"in":[36,153],"systems,":[38],"far-infrared":[39],"(FIR)":[40],"favorable":[43],"because":[44],"they":[45],"invariant":[47],"illumination":[49],"changes.":[50],"Therefore,":[51],"this":[52],"paper":[53],"focuses":[54],"on":[55,75,93,151],"pedestrian":[57,89,188,238],"nighttime":[58],"tracking":[59,121,167,179,199,251],"system":[60],"an":[62,170],"FIR":[63,171],"camera":[64],"is":[66,73,159,233],"able":[67],"discern":[69],"thermal":[70],"energy":[71],"and":[72,90,96,111,135,156,221],"mounted":[74],"forward":[77],"roof":[78],"part":[79],"vehicle.":[82],"Since":[83],"temperature":[85],"difference":[86],"between":[87,226],"background":[91],"depends":[92],"season":[95,110],"weather,":[98,113],"we":[99,123,144,174],"therefore":[100],"propose":[101],"two":[102],"models":[103],"detect":[105],"pedestrians":[106,130,227],"according":[107],"which":[114],"determined":[116],"using":[117,131,169],"Weber-Fechner's":[118],"law.":[119],"For":[120],"pedestrians,":[122,214],"perform":[124],"real-time":[125],"online":[126],"learning":[127],"track":[129],"boosted":[132],"random":[133],"ferns":[134],"update":[136],"trackers":[138],"each":[140],"frame.":[141],"In":[142],"particular,":[143],"link":[145],"detection":[146],"responses":[147],"trajectories":[149],"based":[150],"similarities":[152],"position,":[154],"size,":[155],"appearance.":[157],"There":[158],"no":[160],"standard":[161],"data":[162,180,191,200],"set":[163,181,192],"for":[164,194,201],"evaluating":[165],"performance":[168,252],"camera;":[172],"thus,":[173],"created":[175],"Keimyung":[177],"University":[178],"(KMUTD)":[182],"by":[183],"combining":[184],"KMU":[186],"sudden":[187,215],"crossing":[189],"(SPC)":[190],"[21]":[193],"summer":[195],"nights":[196],"additional":[198],"winter":[202],"nights.":[203],"The":[204,230],"KMUTD":[205],"contains":[206],"video":[207,239],"sequences":[208,240],"involving":[209],"moving":[211,213],"camera,":[212],"shape":[216],"deformations,":[217],"unexpected":[218],"motion":[219],"changes,":[220],"partial":[222],"or":[223],"full":[224],"occlusions":[225],"night.":[229],"proposed":[231,246],"algorithm":[232,247],"successfully":[234],"applied":[235],"KMUTD;":[243],"specifically,":[244],"yields":[248],"more":[249],"accurate":[250],"than":[253],"other":[254],"existing":[255],"methods.":[256]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W2477047852","counts_by_year":[{"year":2024,"cited_by_count":4},{"year":2023,"cited_by_count":4},{"year":2022,"cited_by_count":9},{"year":2021,"cited_by_count":11},{"year":2020,"cited_by_count":9},{"year":2019,"cited_by_count":7},{"year":2018,"cited_by_count":9},{"year":2017,"cited_by_count":4},{"year":2016,"cited_by_count":2}],"updated_date":"2025-01-08T20:52:32.703711","created_date":"2016-08-23"}