{"id":"https://openalex.org/W2342642695","doi":"https://doi.org/10.1109/tits.2015.2502325","title":"Density Enhancement-Based Long-Range Pedestrian Detection Using 3-D Range Data","display_name":"Density Enhancement-Based Long-Range Pedestrian Detection Using 3-D Range Data","publication_year":2015,"publication_date":"2015-12-30","ids":{"openalex":"https://openalex.org/W2342642695","doi":"https://doi.org/10.1109/tits.2015.2502325","mag":"2342642695"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/tits.2015.2502325","pdf_url":null,"source":{"id":"https://openalex.org/S144771191","display_name":"IEEE Transactions on Intelligent Transportation Systems","issn_l":"1524-9050","issn":["1524-9050","1558-0016"],"is_oa":false,"is_in_doaj":false,"is_core":true,"host_organization":"https://openalex.org/P4310319808","host_organization_name":"Institute of Electrical and Electronics Engineers","host_organization_lineage":["https://openalex.org/P4310319808"],"host_organization_lineage_names":["Institute of Electrical and Electronics Engineers"],"type":"journal"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"journal-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5031855986","display_name":"Keqiang Li","orcid":"https://orcid.org/0000-0002-9333-7416"},"institutions":[{"id":"https://openalex.org/I99065089","display_name":"Tsinghua University","ror":"https://ror.org/03cve4549","country_code":"CN","type":"education","lineage":["https://openalex.org/I99065089"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Keqiang Li","raw_affiliation_strings":["Tsinghua University, Beijing, China"],"affiliations":[{"raw_affiliation_string":"Tsinghua University, Beijing, China","institution_ids":["https://openalex.org/I99065089"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5070747726","display_name":"Xiao Wang","orcid":"https://orcid.org/0000-0001-5180-877X"},"institutions":[{"id":"https://openalex.org/I99065089","display_name":"Tsinghua University","ror":"https://ror.org/03cve4549","country_code":"CN","type":"education","lineage":["https://openalex.org/I99065089"]},{"id":"https://openalex.org/I4210167189","display_name":"Academy of Military Transportation","ror":"https://ror.org/05nm40v04","country_code":"CN","type":"education","lineage":["https://openalex.org/I4210167189"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Xiao Wang","raw_affiliation_strings":["Tsinghua University, Military Transportation University, Tianjin, China"],"affiliations":[{"raw_affiliation_string":"Tsinghua University, Military Transportation University, Tianjin, China","institution_ids":["https://openalex.org/I99065089","https://openalex.org/I4210167189"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5109333199","display_name":"Youchun Xu","orcid":null},"institutions":[{"id":"https://openalex.org/I4210167189","display_name":"Academy of Military Transportation","ror":"https://ror.org/05nm40v04","country_code":"CN","type":"education","lineage":["https://openalex.org/I4210167189"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Youchun Xu","raw_affiliation_strings":["Military Transportation University, Tianjin, China"],"affiliations":[{"raw_affiliation_string":"Military Transportation University, Tianjin, China","institution_ids":["https://openalex.org/I4210167189"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5100436368","display_name":"Jianqiang Wang","orcid":"https://orcid.org/0000-0003-4363-6108"},"institutions":[{"id":"https://openalex.org/I99065089","display_name":"Tsinghua University","ror":"https://ror.org/03cve4549","country_code":"CN","type":"education","lineage":["https://openalex.org/I99065089"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Jianqiang Wang","raw_affiliation_strings":["Tsinghua University, Beijing, China"],"affiliations":[{"raw_affiliation_string":"Tsinghua University, Beijing, China","institution_ids":["https://openalex.org/I99065089"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":2,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":1.984,"has_fulltext":true,"fulltext_origin":"ngrams","cited_by_count":51,"citation_normalized_percentile":{"value":0.804557,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":96,"max":97},"biblio":{"volume":"17","issue":"5","first_page":"1368","last_page":"1380"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T11164","display_name":"Remote Sensing and LiDAR Applications","score":0.9994,"subfield":{"id":"https://openalex.org/subfields/2305","display_name":"Environmental Engineering"},"field":{"id":"https://openalex.org/fields/23","display_name":"Environmental Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T11164","display_name":"Remote Sensing and LiDAR Applications","score":0.9994,"subfield":{"id":"https://openalex.org/subfields/2305","display_name":"Environmental Engineering"},"field":{"id":"https://openalex.org/fields/23","display_name":"Environmental Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10036","display_name":"Advanced Neural Network Applications","score":0.9988,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11099","display_name":"Autonomous Vehicle Technology and Safety","score":0.9986,"subfield":{"id":"https://openalex.org/subfields/2203","display_name":"Automotive Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/interpolation","display_name":"Interpolation","score":0.5448449},{"id":"https://openalex.org/keywords/pedestrian-detection","display_name":"Pedestrian detection","score":0.5146164},{"id":"https://openalex.org/keywords/kernel","display_name":"Kernel (algebra)","score":0.49164444}],"concepts":[{"id":"https://openalex.org/C131979681","wikidata":"https://www.wikidata.org/wiki/Q1899648","display_name":"Point cloud","level":2,"score":0.8337034},{"id":"https://openalex.org/C31972630","wikidata":"https://www.wikidata.org/wiki/Q844240","display_name":"Computer vision","level":1,"score":0.5750155},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.5561025},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.5452923},{"id":"https://openalex.org/C137800194","wikidata":"https://www.wikidata.org/wiki/Q11713455","display_name":"Interpolation (computer graphics)","level":3,"score":0.5448449},{"id":"https://openalex.org/C176217482","wikidata":"https://www.wikidata.org/wiki/Q860554","display_name":"Metric (unit)","level":2,"score":0.53169954},{"id":"https://openalex.org/C2780156472","wikidata":"https://www.wikidata.org/wiki/Q2355550","display_name":"Pedestrian detection","level":3,"score":0.5146164},{"id":"https://openalex.org/C74193536","wikidata":"https://www.wikidata.org/wiki/Q574844","display_name":"Kernel (algebra)","level":2,"score":0.49164444},{"id":"https://openalex.org/C204323151","wikidata":"https://www.wikidata.org/wiki/Q905424","display_name":"Range (aeronautics)","level":2,"score":0.48515683},{"id":"https://openalex.org/C51399673","wikidata":"https://www.wikidata.org/wiki/Q504027","display_name":"Lidar","level":2,"score":0.48270845},{"id":"https://openalex.org/C2776151529","wikidata":"https://www.wikidata.org/wiki/Q3045304","display_name":"Object detection","level":3,"score":0.44634718},{"id":"https://openalex.org/C80551277","wikidata":"https://www.wikidata.org/wiki/Q11210","display_name":"Coordinate system","level":2,"score":0.43278196},{"id":"https://openalex.org/C11413529","wikidata":"https://www.wikidata.org/wiki/Q8366","display_name":"Algorithm","level":1,"score":0.37806547},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.32719934},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.22518393},{"id":"https://openalex.org/C2777113093","wikidata":"https://www.wikidata.org/wiki/Q221488","display_name":"Pedestrian","level":2,"score":0.2209146},{"id":"https://openalex.org/C127413603","wikidata":"https://www.wikidata.org/wiki/Q11023","display_name":"Engineering","level":0,"score":0.18839613},{"id":"https://openalex.org/C62649853","wikidata":"https://www.wikidata.org/wiki/Q199687","display_name":"Remote sensing","level":1,"score":0.18594038},{"id":"https://openalex.org/C205649164","wikidata":"https://www.wikidata.org/wiki/Q1071","display_name":"Geography","level":0,"score":0.14107236},{"id":"https://openalex.org/C115961682","wikidata":"https://www.wikidata.org/wiki/Q860623","display_name":"Image (mathematics)","level":2,"score":0.08888972},{"id":"https://openalex.org/C22212356","wikidata":"https://www.wikidata.org/wiki/Q775325","display_name":"Transport engineering","level":1,"score":0.0},{"id":"https://openalex.org/C146978453","wikidata":"https://www.wikidata.org/wiki/Q3798668","display_name":"Aerospace engineering","level":1,"score":0.0},{"id":"https://openalex.org/C21547014","wikidata":"https://www.wikidata.org/wiki/Q1423657","display_name":"Operations management","level":1,"score":0.0},{"id":"https://openalex.org/C114614502","wikidata":"https://www.wikidata.org/wiki/Q76592","display_name":"Combinatorics","level":1,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/tits.2015.2502325","pdf_url":null,"source":{"id":"https://openalex.org/S144771191","display_name":"IEEE Transactions on Intelligent Transportation Systems","issn_l":"1524-9050","issn":["1524-9050","1558-0016"],"is_oa":false,"is_in_doaj":false,"is_core":true,"host_organization":"https://openalex.org/P4310319808","host_organization_name":"Institute of Electrical and Electronics Engineers","host_organization_lineage":["https://openalex.org/P4310319808"],"host_organization_lineage_names":["Institute of Electrical and Electronics Engineers"],"type":"journal"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[{"display_name":"Sustainable cities and communities","score":0.69,"id":"https://metadata.un.org/sdg/11"}],"grants":[{"funder":"https://openalex.org/F4320321001","funder_display_name":"National Natural Science Foundation of China","award_id":"51475254"},{"funder":"https://openalex.org/F4320321001","funder_display_name":"National Natural Science Foundation of China","award_id":"51175290"},{"funder":"https://openalex.org/F4320322392","funder_display_name":"Tsinghua University","award_id":null}],"datasets":[],"versions":[],"referenced_works_count":39,"referenced_works":["https://openalex.org/W1536864910","https://openalex.org/W1964354889","https://openalex.org/W1967535090","https://openalex.org/W1975095909","https://openalex.org/W1977758817","https://openalex.org/W1981632858","https://openalex.org/W1982764079","https://openalex.org/W1989736002","https://openalex.org/W1994789483","https://openalex.org/W1997763771","https://openalex.org/W2014540832","https://openalex.org/W2014888258","https://openalex.org/W2016936259","https://openalex.org/W2022204099","https://openalex.org/W2031454541","https://openalex.org/W2039402388","https://openalex.org/W2074797641","https://openalex.org/W2077513643","https://openalex.org/W2077638917","https://openalex.org/W2079624250","https://openalex.org/W2085261163","https://openalex.org/W2095769364","https://openalex.org/W2102157586","https://openalex.org/W2102792607","https://openalex.org/W2111957821","https://openalex.org/W2118810648","https://openalex.org/W2125556102","https://openalex.org/W2133755669","https://openalex.org/W2142672420","https://openalex.org/W2153635508","https://openalex.org/W2158688659","https://openalex.org/W2158698691","https://openalex.org/W2161969291","https://openalex.org/W2166774169","https://openalex.org/W2168356304","https://openalex.org/W2591162375","https://openalex.org/W42253513","https://openalex.org/W4244829582","https://openalex.org/W4246727630"],"related_works":["https://openalex.org/W4385801324","https://openalex.org/W3201613623","https://openalex.org/W3142777113","https://openalex.org/W3009777820","https://openalex.org/W2979718872","https://openalex.org/W2919889606","https://openalex.org/W2913302899","https://openalex.org/W2497633036","https://openalex.org/W2129431236","https://openalex.org/W2067373798"],"abstract_inverted_index":{"The":[0,52,149],"ability":[1],"to":[2,43,101,137],"perform":[3],"long-range":[4],"pedestrian":[5],"detection":[6,29],"is":[7,24,41,57,73,87,99,154],"essential":[8],"for":[9,13],"autonomous":[10],"vehicles.":[11],"However,":[12],"3-D":[14],"LIDAR,":[15],"an":[16,58],"object's":[17,59,118],"point":[18,50,61,71,105],"cloud":[19,72,106],"becomes":[20],"sparse":[21,49],"when":[22],"it":[23],"away,":[25],"directly":[26],"affecting":[27],"its":[28,127],"as":[30],"a":[31,36,48,64,76,96,103,111,131,139],"result.":[32],"In":[33],"this":[34,152],"paper,":[35],"novel":[37],"density":[38,112],"enhancement":[39],"method":[40,56,125,136,153],"proposed":[42],"improve":[44],"the":[45,55,70,91,117],"quality":[46],"of":[47,54,69,123,130,151],"cloud.":[51],"input":[53],"raw":[60],"cloud;":[62],"first,":[63],"high-quality":[65],"local":[66,92,132],"coordinate":[67,93,133],"system":[68,134],"built":[74],"using":[75,156],"new":[77,104],"evaluation":[78,128],"metric,":[79],"and":[80,135,143,159],"then":[81],"radial":[82],"basis":[83],"function":[84],"(RBF)-based":[85],"interpolation":[86,147],"performed":[88],"based":[89],"on":[90],"system.":[94],"Finally,":[95],"resampling":[97],"algorithm":[98],"used":[100],"generate":[102],"that":[107],"not":[108],"only":[109],"meets":[110],"requirement":[113],"but":[114],"also":[115],"fits":[116],"geometric":[119],"shape.":[120],"Novel":[121],"features":[122],"our":[124],"are":[126],"metric":[129],"choose":[138],"good":[140],"shape":[141],"parameter":[142],"kernel":[144],"in":[145],"RBF-based":[146],"step.":[148],"effectiveness":[150],"demonstrated":[155],"naturalistic":[157],"data":[158],"three":[160],"experiments.":[161]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W2342642695","counts_by_year":[{"year":2024,"cited_by_count":1},{"year":2023,"cited_by_count":2},{"year":2022,"cited_by_count":7},{"year":2021,"cited_by_count":8},{"year":2020,"cited_by_count":11},{"year":2019,"cited_by_count":11},{"year":2018,"cited_by_count":6},{"year":2017,"cited_by_count":5}],"updated_date":"2024-12-12T21:16:28.160604","created_date":"2016-06-24"}