{"id":"https://openalex.org/W3199267905","doi":"https://doi.org/10.1109/tip.2021.3113563","title":"ACP++: Action Co-Occurrence Priors for Human-Object Interaction Detection","display_name":"ACP++: Action Co-Occurrence Priors for Human-Object Interaction Detection","publication_year":2021,"publication_date":"2021-01-01","ids":{"openalex":"https://openalex.org/W3199267905","doi":"https://doi.org/10.1109/tip.2021.3113563","mag":"3199267905","pmid":"https://pubmed.ncbi.nlm.nih.gov/34554914"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/tip.2021.3113563","pdf_url":null,"source":{"id":"https://openalex.org/S4210173141","display_name":"IEEE Transactions on Image Processing","issn_l":"1057-7149","issn":["1057-7149","1941-0042"],"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":true,"is_core":true,"host_organization":"https://openalex.org/P4310319808","host_organization_name":"Institute of Electrical and Electronics Engineers","host_organization_lineage":["https://openalex.org/P4310319808"],"host_organization_lineage_names":["Institute of Electrical and Electronics Engineers"],"type":"journal"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"journal-article","indexed_in":["arxiv","crossref","datacite","pubmed"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"http://arxiv.org/pdf/2109.04047","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5100393157","display_name":"Dong-Jin Kim","orcid":"https://orcid.org/0000-0001-7231-7494"},"institutions":[{"id":"https://openalex.org/I157485424","display_name":"Korea Advanced Institute of Science and Technology","ror":"https://ror.org/05apxxy63","country_code":"KR","type":"funder","lineage":["https://openalex.org/I157485424"]}],"countries":["KR"],"is_corresponding":false,"raw_author_name":"Dong-Jin Kim","raw_affiliation_strings":["School of Electrical and Computer Engineering, KAIST, Daejeon, Republic of Korea."],"affiliations":[{"raw_affiliation_string":"School of Electrical and Computer Engineering, KAIST, Daejeon, Republic of Korea.","institution_ids":["https://openalex.org/I157485424"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5088062069","display_name":"Xiao Sun","orcid":"https://orcid.org/0000-0001-9750-7032"},"institutions":[{"id":"https://openalex.org/I4210113369","display_name":"Microsoft Research Asia (China)","ror":"https://ror.org/0300m5276","country_code":"CN","type":"funder","lineage":["https://openalex.org/I1290206253","https://openalex.org/I4210113369"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Xiao Sun","raw_affiliation_strings":["Visual Computing group, Microsoft Research, Beijing, China."],"affiliations":[{"raw_affiliation_string":"Visual Computing group, Microsoft Research, Beijing, China.","institution_ids":["https://openalex.org/I4210113369"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5010273576","display_name":"Jinsoo Choi","orcid":"https://orcid.org/0000-0002-3650-9461"},"institutions":[{"id":"https://openalex.org/I157485424","display_name":"Korea Advanced Institute of Science and Technology","ror":"https://ror.org/05apxxy63","country_code":"KR","type":"funder","lineage":["https://openalex.org/I157485424"]}],"countries":["KR"],"is_corresponding":false,"raw_author_name":"Jinsoo Choi","raw_affiliation_strings":["School of Electrical and Computer Engineering, KAIST, Daejeon, Republic of Korea."],"affiliations":[{"raw_affiliation_string":"School of Electrical and Computer Engineering, KAIST, Daejeon, Republic of Korea.","institution_ids":["https://openalex.org/I157485424"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5025114648","display_name":"Stephen Lin","orcid":"https://orcid.org/0000-0002-5616-558X"},"institutions":[{"id":"https://openalex.org/I4210113369","display_name":"Microsoft Research Asia (China)","ror":"https://ror.org/0300m5276","country_code":"CN","type":"funder","lineage":["https://openalex.org/I1290206253","https://openalex.org/I4210113369"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Stephen Lin","raw_affiliation_strings":["Visual Computing group, Microsoft Research, Beijing, China."],"affiliations":[{"raw_affiliation_string":"Visual Computing group, Microsoft Research, Beijing, China.","institution_ids":["https://openalex.org/I4210113369"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5012455275","display_name":"In So Kweon","orcid":"https://orcid.org/0000-0001-9626-5983"},"institutions":[{"id":"https://openalex.org/I4210113369","display_name":"Microsoft Research Asia (China)","ror":"https://ror.org/0300m5276","country_code":"CN","type":"funder","lineage":["https://openalex.org/I1290206253","https://openalex.org/I4210113369"]},{"id":"https://openalex.org/I157485424","display_name":"Korea Advanced Institute of Science and Technology","ror":"https://ror.org/05apxxy63","country_code":"KR","type":"funder","lineage":["https://openalex.org/I157485424"]}],"countries":["CN","KR"],"is_corresponding":true,"raw_author_name":"In So Kweon","raw_affiliation_strings":["School of Electrical and Computer Engineering, KAIST, Daejeon, Republic of Korea.","Visual Computing group, Microsoft Research, Beijing, China."],"affiliations":[{"raw_affiliation_string":"Visual Computing group, Microsoft Research, Beijing, China.","institution_ids":["https://openalex.org/I4210113369"]},{"raw_affiliation_string":"School of Electrical and Computer Engineering, KAIST, Daejeon, Republic of Korea.","institution_ids":["https://openalex.org/I157485424"]}]}],"institution_assertions":[],"countries_distinct_count":2,"institutions_distinct_count":2,"corresponding_author_ids":["https://openalex.org/A5012455275"],"corresponding_institution_ids":["https://openalex.org/I4210113369","https://openalex.org/I157485424"],"apc_list":null,"apc_paid":null,"fwci":1.089,"has_fulltext":true,"fulltext_origin":"pdf","cited_by_count":12,"citation_normalized_percentile":{"value":0.810288,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":88,"max":89},"biblio":{"volume":"30","issue":null,"first_page":"9150","last_page":"9163"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T11714","display_name":"Multimodal Machine Learning Applications","score":1.0,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T11714","display_name":"Multimodal Machine Learning Applications","score":1.0,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10812","display_name":"Human Pose and Action Recognition","score":0.9994,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11307","display_name":"Domain Adaptation and Few-Shot Learning","score":0.9933,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/leverage","display_name":"Leverage (statistics)","score":0.73719716},{"id":"https://openalex.org/keywords/benchmark","display_name":"Benchmark (surveying)","score":0.6400582},{"id":"https://openalex.org/keywords/action-recognition","display_name":"Action Recognition","score":0.5346407}],"concepts":[{"id":"https://openalex.org/C177769412","wikidata":"https://www.wikidata.org/wiki/Q278090","display_name":"Prior probability","level":3,"score":0.7668955},{"id":"https://openalex.org/C153083717","wikidata":"https://www.wikidata.org/wiki/Q6535263","display_name":"Leverage (statistics)","level":2,"score":0.73719716},{"id":"https://openalex.org/C185798385","wikidata":"https://www.wikidata.org/wiki/Q1161707","display_name":"Benchmark (surveying)","level":2,"score":0.6400582},{"id":"https://openalex.org/C2776151529","wikidata":"https://www.wikidata.org/wiki/Q3045304","display_name":"Object detection","level":3,"score":0.6220179},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.60892093},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.5478966},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.5414453},{"id":"https://openalex.org/C2987834672","wikidata":"https://www.wikidata.org/wiki/Q4677630","display_name":"Action recognition","level":3,"score":0.5346407},{"id":"https://openalex.org/C2781238097","wikidata":"https://www.wikidata.org/wiki/Q175026","display_name":"Object (grammar)","level":2,"score":0.4934589},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.48476213},{"id":"https://openalex.org/C2780791683","wikidata":"https://www.wikidata.org/wiki/Q846785","display_name":"Action (physics)","level":2,"score":0.47464046},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.32347256},{"id":"https://openalex.org/C2777212361","wikidata":"https://www.wikidata.org/wiki/Q5127848","display_name":"Class (philosophy)","level":2,"score":0.10417208},{"id":"https://openalex.org/C107673813","wikidata":"https://www.wikidata.org/wiki/Q812534","display_name":"Bayesian probability","level":2,"score":0.10407129},{"id":"https://openalex.org/C121332964","wikidata":"https://www.wikidata.org/wiki/Q413","display_name":"Physics","level":0,"score":0.0},{"id":"https://openalex.org/C13280743","wikidata":"https://www.wikidata.org/wiki/Q131089","display_name":"Geodesy","level":1,"score":0.0},{"id":"https://openalex.org/C62520636","wikidata":"https://www.wikidata.org/wiki/Q944","display_name":"Quantum mechanics","level":1,"score":0.0},{"id":"https://openalex.org/C205649164","wikidata":"https://www.wikidata.org/wiki/Q1071","display_name":"Geography","level":0,"score":0.0}],"mesh":[{"descriptor_ui":"D000465","descriptor_name":"Algorithms","qualifier_ui":"","qualifier_name":null,"is_major_topic":true},{"descriptor_ui":"D006801","descriptor_name":"Humans","qualifier_ui":"","qualifier_name":null,"is_major_topic":false}],"locations_count":4,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/tip.2021.3113563","pdf_url":null,"source":{"id":"https://openalex.org/S4210173141","display_name":"IEEE Transactions on Image Processing","issn_l":"1057-7149","issn":["1057-7149","1941-0042"],"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":true,"is_core":true,"host_organization":"https://openalex.org/P4310319808","host_organization_name":"Institute of Electrical and Electronics Engineers","host_organization_lineage":["https://openalex.org/P4310319808"],"host_organization_lineage_names":["Institute of Electrical and Electronics Engineers"],"type":"journal"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/2109.04047","pdf_url":"http://arxiv.org/pdf/2109.04047","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":false,"landing_page_url":"https://pubmed.ncbi.nlm.nih.gov/34554914","pdf_url":null,"source":{"id":"https://openalex.org/S4306525036","display_name":"PubMed","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I1299303238","host_organization_name":"National Institutes of Health","host_organization_lineage":["https://openalex.org/I1299303238"],"host_organization_lineage_names":["National Institutes of Health"],"type":"repository"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},{"is_oa":false,"landing_page_url":"https://api.datacite.org/dois/10.48550/arxiv.2109.04047","pdf_url":null,"source":{"id":"https://openalex.org/S4393179698","display_name":"DataCite API","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I4210145204","host_organization_name":"DataCite","host_organization_lineage":["https://openalex.org/I4210145204"],"host_organization_lineage_names":["DataCite"],"type":"metadata"},"license":null,"license_id":null,"version":null}],"best_oa_location":{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/2109.04047","pdf_url":"http://arxiv.org/pdf/2109.04047","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[{"display_name":"Quality education","id":"https://metadata.un.org/sdg/4","score":0.44}],"grants":[{"funder":"https://openalex.org/F4320335489","funder_display_name":"Institute for Information and Communications Technology Promotion","award_id":"2017-0-01772"}],"datasets":[],"versions":["https://openalex.org/W3199267905"],"referenced_works_count":114,"referenced_works":["https://openalex.org/W1237089097","https://openalex.org/W1551928752","https://openalex.org/W1748750709","https://openalex.org/W1766290689","https://openalex.org/W1821462560","https://openalex.org/W1861492603","https://openalex.org/W1928739709","https://openalex.org/W2014788385","https://openalex.org/W2030005056","https://openalex.org/W2032165333","https://openalex.org/W2037142068","https://openalex.org/W2038765747","https://openalex.org/W2046589395","https://openalex.org/W2050964073","https://openalex.org/W2063386797","https://openalex.org/W2081580037","https://openalex.org/W2106097867","https://openalex.org/W2106833577","https://openalex.org/W2112562896","https://openalex.org/W2113016070","https://openalex.org/W2125215748","https://openalex.org/W2137881638","https://openalex.org/W2158234032","https://openalex.org/W2160254296","https://openalex.org/W2194775991","https://openalex.org/W2214124602","https://openalex.org/W2250539671","https://openalex.org/W2277195237","https://openalex.org/W2463402750","https://openalex.org/W2479423890","https://openalex.org/W2519887557","https://openalex.org/W2554334383","https://openalex.org/W2561715562","https://openalex.org/W2579549467","https://openalex.org/W2591644541","https://openalex.org/W2594494421","https://openalex.org/W2607855566","https://openalex.org/W2613718673","https://openalex.org/W2737725206","https://openalex.org/W2754191212","https://openalex.org/W2777602943","https://openalex.org/W2780186312","https://openalex.org/W2789158025","https://openalex.org/W2801004733","https://openalex.org/W2808675313","https://openalex.org/W2810482788","https://openalex.org/W2883170015","https://openalex.org/W2886970679","https://openalex.org/W2887029921","https://openalex.org/W2888096830","https://openalex.org/W2888814092","https://openalex.org/W2890250492","https://openalex.org/W2890531016","https://openalex.org/W2896659472","https://openalex.org/W2950096400","https://openalex.org/W2951702519","https://openalex.org/W2951901104","https://openalex.org/W2955813853","https://openalex.org/W2955882737","https://openalex.org/W2955988340","https://openalex.org/W2962737704","https://openalex.org/W2962811161","https://openalex.org/W2962844592","https://openalex.org/W2962860144","https://openalex.org/W2963091558","https://openalex.org/W2963097937","https://openalex.org/W2963336968","https://openalex.org/W2963449176","https://openalex.org/W2963480047","https://openalex.org/W2963536419","https://openalex.org/W2963649796","https://openalex.org/W2963687836","https://openalex.org/W2963880187","https://openalex.org/W2963902384","https://openalex.org/W2964015378","https://openalex.org/W2964225075","https://openalex.org/W2976658881","https://openalex.org/W2976818183","https://openalex.org/W2980248933","https://openalex.org/W2982147439","https://openalex.org/W2982232158","https://openalex.org/W2984933298","https://openalex.org/W2989948328","https://openalex.org/W2990599624","https://openalex.org/W2997150218","https://openalex.org/W3009811369","https://openalex.org/W3021931813","https://openalex.org/W3034895839","https://openalex.org/W3034934229","https://openalex.org/W3034951775","https://openalex.org/W3035017890","https://openalex.org/W3035598501","https://openalex.org/W3042611018","https://openalex.org/W3092575340","https://openalex.org/W3095753865","https://openalex.org/W3102452576","https://openalex.org/W3103211586","https://openalex.org/W3106121867","https://openalex.org/W3106313398","https://openalex.org/W3106988096","https://openalex.org/W3107081247","https://openalex.org/W3109754877","https://openalex.org/W3109813419","https://openalex.org/W3170041732","https://openalex.org/W3186953717","https://openalex.org/W3205625102","https://openalex.org/W4289542422","https://openalex.org/W4295750171","https://openalex.org/W4301141993","https://openalex.org/W4306979059","https://openalex.org/W4386207016","https://openalex.org/W4386506836","https://openalex.org/W639708223","https://openalex.org/W64813323"],"related_works":["https://openalex.org/W4390721878","https://openalex.org/W4386190339","https://openalex.org/W4287991909","https://openalex.org/W3213878615","https://openalex.org/W3142333283","https://openalex.org/W3122088529","https://openalex.org/W3041320102","https://openalex.org/W2968424575","https://openalex.org/W2580650124","https://openalex.org/W2378211422"],"abstract_inverted_index":{"A":[0],"common":[1],"problem":[2],"in":[3,25],"the":[4,67,100,108,114],"task":[5],"of":[6,21,34,93,102,113],"human-object":[7,60],"interaction":[8],"(HOI)":[9],"detection":[10,118],"is":[11,96],"that":[12,52],"numerous":[13],"HOI":[14,117],"classes":[15],"have":[16],"only":[17],"a":[18,29],"small":[19],"number":[20],"labeled":[22],"examples,":[23],"resulting":[24],"training":[26],"sets":[27],"with":[28],"long-tailed":[30],"distribution.":[31],"The":[32,91],"lack":[33],"positive":[35],"labels":[36],"can":[37],"lead":[38],"to":[39,76],"low":[40],"classification":[41],"accuracy":[42],"for":[43,83],"these":[44,78],"classes.":[45,90],"Towards":[46],"addressing":[47],"this":[48,63],"issue,":[49],"we":[50,65],"observe":[51],"there":[53],"exist":[54],"natural":[55],"correlations":[56,68],"and":[57,73,80,122],"anti-correlations":[58],"among":[59],"interactions.":[61],"In":[62],"paper,":[64],"model":[66],"as":[69],"action":[70],"co-occurrence":[71],"matrices":[72],"present":[74],"techniques":[75],"learn":[77],"priors":[79],"leverage":[81],"them":[82],"more":[84],"effective":[85],"training,":[86],"especially":[87],"on":[88,111],"rare":[89],"efficacy":[92],"our":[94,103],"approach":[95,104],"demonstrated":[97],"experimentally,":[98],"where":[99],"performance":[101],"consistently":[105],"improves":[106],"over":[107],"state-of-the-art":[109],"methods":[110],"both":[112],"two":[115],"leading":[116],"benchmark":[119],"datasets,":[120],"HICO-Det":[121],"V-COCO.":[123]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W3199267905","counts_by_year":[{"year":2024,"cited_by_count":1},{"year":2023,"cited_by_count":4},{"year":2022,"cited_by_count":4},{"year":2021,"cited_by_count":2},{"year":2020,"cited_by_count":1}],"updated_date":"2025-03-21T20:54:29.856901","created_date":"2021-09-27"}