{"id":"https://openalex.org/W3158810259","doi":"https://doi.org/10.1109/tip.2021.3077136","title":"Learning From Images: A Distillation Learning Framework for Event Cameras","display_name":"Learning From Images: A Distillation Learning Framework for Event Cameras","publication_year":2021,"publication_date":"2021-01-01","ids":{"openalex":"https://openalex.org/W3158810259","doi":"https://doi.org/10.1109/tip.2021.3077136","mag":"3158810259","pmid":"https://pubmed.ncbi.nlm.nih.gov/33961557"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/tip.2021.3077136","pdf_url":null,"source":{"id":"https://openalex.org/S4210173141","display_name":"IEEE Transactions on Image Processing","issn_l":"1057-7149","issn":["1057-7149","1941-0042"],"is_oa":false,"is_in_doaj":false,"is_core":true,"host_organization":"https://openalex.org/P4310319808","host_organization_name":"Institute of Electrical and Electronics Engineers","host_organization_lineage":["https://openalex.org/P4310319808"],"host_organization_lineage_names":["Institute of Electrical and Electronics Engineers"],"type":"journal"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"journal-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5048895548","display_name":"Yongjian Deng","orcid":"https://orcid.org/0000-0001-6253-3564"},"institutions":[{"id":"https://openalex.org/I168719708","display_name":"City University of Hong Kong","ror":"https://ror.org/03q8dnn23","country_code":"HK","type":"education","lineage":["https://openalex.org/I168719708"]}],"countries":["HK"],"is_corresponding":false,"raw_author_name":"Yongjian Deng","raw_affiliation_strings":["City University of Hong Kong, Hong Kong, SAR, China"],"affiliations":[{"raw_affiliation_string":"City University of Hong Kong, Hong Kong, SAR, China","institution_ids":["https://openalex.org/I168719708"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5100353537","display_name":"Hao Chen","orcid":"https://orcid.org/0000-0002-3138-505X"},"institutions":[{"id":"https://openalex.org/I76569877","display_name":"Southeast University","ror":"https://ror.org/04ct4d772","country_code":"CN","type":"education","lineage":["https://openalex.org/I76569877"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Hao Chen","raw_affiliation_strings":["Key Laboratory of Computer Network and Information Integration, Ministry of Education, Southeast University, Nanjing, China","School of Computer Science and Engineering, Southeast University, Nanjing, China"],"affiliations":[{"raw_affiliation_string":"Key Laboratory of Computer Network and Information Integration, Ministry of Education, Southeast University, Nanjing, China","institution_ids":["https://openalex.org/I76569877"]},{"raw_affiliation_string":"School of Computer Science and Engineering, Southeast University, Nanjing, China","institution_ids":["https://openalex.org/I76569877"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5100657494","display_name":"Huiying Chen","orcid":"https://orcid.org/0000-0002-1482-193X"},"institutions":[{"id":"https://openalex.org/I14243506","display_name":"Hong Kong Polytechnic University","ror":"https://ror.org/0030zas98","country_code":"HK","type":"education","lineage":["https://openalex.org/I14243506"]}],"countries":["HK"],"is_corresponding":false,"raw_author_name":"Huiying Chen","raw_affiliation_strings":["The Hong Kong Polytechnic University, Hong Kong, SAR, China"],"affiliations":[{"raw_affiliation_string":"The Hong Kong Polytechnic University, Hong Kong, SAR, China","institution_ids":["https://openalex.org/I14243506"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5100642147","display_name":"Youfu Li","orcid":"https://orcid.org/0000-0002-5227-1326"},"institutions":[{"id":"https://openalex.org/I168719708","display_name":"City University of Hong Kong","ror":"https://ror.org/03q8dnn23","country_code":"HK","type":"education","lineage":["https://openalex.org/I168719708"]}],"countries":["HK"],"is_corresponding":false,"raw_author_name":"Youfu Li","raw_affiliation_strings":["City University of Hong Kong, Hong Kong, SAR, China"],"affiliations":[{"raw_affiliation_string":"City University of Hong Kong, Hong Kong, SAR, China","institution_ids":["https://openalex.org/I168719708"]}]}],"institution_assertions":[],"countries_distinct_count":2,"institutions_distinct_count":3,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":1.889,"has_fulltext":false,"cited_by_count":25,"citation_normalized_percentile":{"value":0.999983,"is_in_top_1_percent":true,"is_in_top_10_percent":true},"cited_by_percentile_year":{"min":95,"max":96},"biblio":{"volume":"30","issue":null,"first_page":"4919","last_page":"4931"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10502","display_name":"Advanced Memory and Neural Computing","score":1.0,"subfield":{"id":"https://openalex.org/subfields/2208","display_name":"Electrical and Electronic Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10502","display_name":"Advanced Memory and Neural Computing","score":1.0,"subfield":{"id":"https://openalex.org/subfields/2208","display_name":"Electrical and Electronic Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T12808","display_name":"Ferroelectric and Negative Capacitance Devices","score":0.988,"subfield":{"id":"https://openalex.org/subfields/2208","display_name":"Electrical and Electronic Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T12676","display_name":"Machine Learning and ELM","score":0.9845,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/robustness","display_name":"Robustness","score":0.6786334},{"id":"https://openalex.org/keywords/discriminative-model","display_name":"Discriminative model","score":0.5952984},{"id":"https://openalex.org/keywords/optical-flow","display_name":"Optical Flow","score":0.45184305},{"id":"https://openalex.org/keywords/margin","display_name":"Margin (machine learning)","score":0.44483137},{"id":"https://openalex.org/keywords/feature","display_name":"Feature (linguistics)","score":0.42052847}],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.8140148},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.74099076},{"id":"https://openalex.org/C63479239","wikidata":"https://www.wikidata.org/wiki/Q7353546","display_name":"Robustness (evolution)","level":3,"score":0.6786334},{"id":"https://openalex.org/C52622490","wikidata":"https://www.wikidata.org/wiki/Q1026626","display_name":"Feature extraction","level":2,"score":0.6512615},{"id":"https://openalex.org/C97931131","wikidata":"https://www.wikidata.org/wiki/Q5282087","display_name":"Discriminative model","level":2,"score":0.5952984},{"id":"https://openalex.org/C2779662365","wikidata":"https://www.wikidata.org/wiki/Q5416694","display_name":"Event (particle physics)","level":2,"score":0.5898613},{"id":"https://openalex.org/C31972630","wikidata":"https://www.wikidata.org/wiki/Q844240","display_name":"Computer vision","level":1,"score":0.5162156},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.4943483},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.4535833},{"id":"https://openalex.org/C155542232","wikidata":"https://www.wikidata.org/wiki/Q736111","display_name":"Optical flow","level":3,"score":0.45184305},{"id":"https://openalex.org/C774472","wikidata":"https://www.wikidata.org/wiki/Q6760393","display_name":"Margin (machine learning)","level":2,"score":0.44483137},{"id":"https://openalex.org/C2776401178","wikidata":"https://www.wikidata.org/wiki/Q12050496","display_name":"Feature (linguistics)","level":2,"score":0.42052847},{"id":"https://openalex.org/C115961682","wikidata":"https://www.wikidata.org/wiki/Q860623","display_name":"Image (mathematics)","level":2,"score":0.22698373},{"id":"https://openalex.org/C55493867","wikidata":"https://www.wikidata.org/wiki/Q7094","display_name":"Biochemistry","level":1,"score":0.0},{"id":"https://openalex.org/C185592680","wikidata":"https://www.wikidata.org/wiki/Q2329","display_name":"Chemistry","level":0,"score":0.0},{"id":"https://openalex.org/C41895202","wikidata":"https://www.wikidata.org/wiki/Q8162","display_name":"Linguistics","level":1,"score":0.0},{"id":"https://openalex.org/C138885662","wikidata":"https://www.wikidata.org/wiki/Q5891","display_name":"Philosophy","level":0,"score":0.0},{"id":"https://openalex.org/C104317684","wikidata":"https://www.wikidata.org/wiki/Q7187","display_name":"Gene","level":2,"score":0.0},{"id":"https://openalex.org/C121332964","wikidata":"https://www.wikidata.org/wiki/Q413","display_name":"Physics","level":0,"score":0.0},{"id":"https://openalex.org/C62520636","wikidata":"https://www.wikidata.org/wiki/Q944","display_name":"Quantum mechanics","level":1,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/tip.2021.3077136","pdf_url":null,"source":{"id":"https://openalex.org/S4210173141","display_name":"IEEE Transactions on Image Processing","issn_l":"1057-7149","issn":["1057-7149","1941-0042"],"is_oa":false,"is_in_doaj":false,"is_core":true,"host_organization":"https://openalex.org/P4310319808","host_organization_name":"Institute of Electrical and Electronics Engineers","host_organization_lineage":["https://openalex.org/P4310319808"],"host_organization_lineage_names":["Institute of Electrical and Electronics Engineers"],"type":"journal"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[{"score":0.69,"id":"https://metadata.un.org/sdg/10","display_name":"Reduced inequalities"}],"grants":[{"funder":"https://openalex.org/F4320321001","funder_display_name":"National Natural Science Foundation of China","award_id":"61873220"},{"funder":"https://openalex.org/F4320321592","funder_display_name":"Research Grants Council, University Grants Committee","award_id":"CityU 11213420"}],"datasets":[],"versions":[],"referenced_works_count":65,"referenced_works":["https://openalex.org/W101771737","https://openalex.org/W1522301498","https://openalex.org/W1686810756","https://openalex.org/W1690739335","https://openalex.org/W1821462560","https://openalex.org/W1980178290","https://openalex.org/W2006370340","https://openalex.org/W2014673260","https://openalex.org/W2016574277","https://openalex.org/W2020096355","https://openalex.org/W206948248","https://openalex.org/W2108598243","https://openalex.org/W2123838014","https://openalex.org/W2134797427","https://openalex.org/W2194775991","https://openalex.org/W2207801947","https://openalex.org/W2419501139","https://openalex.org/W2469278928","https://openalex.org/W2561238782","https://openalex.org/W2563767618","https://openalex.org/W2586307223","https://openalex.org/W2619510810","https://openalex.org/W2729870626","https://openalex.org/W2745933219","https://openalex.org/W2748787960","https://openalex.org/W2766013930","https://openalex.org/W2788172931","https://openalex.org/W2883780447","https://openalex.org/W2887997457","https://openalex.org/W2909381593","https://openalex.org/W2913843253","https://openalex.org/W2936864631","https://openalex.org/W2962804204","https://openalex.org/W2962858109","https://openalex.org/W2962949341","https://openalex.org/W2963073614","https://openalex.org/W2963420272","https://openalex.org/W2963510238","https://openalex.org/W2963800509","https://openalex.org/W2964118293","https://openalex.org/W2964121744","https://openalex.org/W2964420626","https://openalex.org/W2970454332","https://openalex.org/W2970736947","https://openalex.org/W2979969178","https://openalex.org/W2995480165","https://openalex.org/W2995607862","https://openalex.org/W2998281665","https://openalex.org/W3010268791","https://openalex.org/W3016005719","https://openalex.org/W3034469298","https://openalex.org/W3035137671","https://openalex.org/W3040838455","https://openalex.org/W3049194477","https://openalex.org/W3087591564","https://openalex.org/W3090117981","https://openalex.org/W3095334530","https://openalex.org/W3099359153","https://openalex.org/W3102178346","https://openalex.org/W3105213754","https://openalex.org/W3106188738","https://openalex.org/W3118608800","https://openalex.org/W3188021906","https://openalex.org/W4226051885","https://openalex.org/W4248597066"],"related_works":["https://openalex.org/W4389116644","https://openalex.org/W4205463238","https://openalex.org/W3103844505","https://openalex.org/W2981954115","https://openalex.org/W2965546495","https://openalex.org/W259157601","https://openalex.org/W2521627374","https://openalex.org/W2153315159","https://openalex.org/W2110523656","https://openalex.org/W1482209366"],"abstract_inverted_index":{"Event":[0],"cameras":[1,23],"have":[2],"recently":[3],"drawn":[4],"massive":[5],"attention":[6],"in":[7],"the":[8,81,93,103,129,168,205,209],"computer":[9],"vision":[10,217],"community":[11],"because":[12],"of":[13,30,35,85,105,170,194,208],"their":[14,61],"low":[15],"power":[16],"consumption":[17],"and":[18,26,50,69,136,149,155,212],"high":[19],"response":[20],"speed.":[21],"These":[22,33],"produce":[24],"sparse":[25],"non-uniform":[27],"spatiotemporal":[28],"representations":[29,36],"a":[31,111,177,183],"scene.":[32],"characteristics":[34],"make":[37],"it":[38],"difficult":[39],"for":[40,102,133,187],"event-based":[41,54,86,171,188,210],"models":[42,87,172],"to":[43,60,79,96,139],"extract":[44],"discriminative":[45],"cues":[46],"(such":[47],"as":[48],"textures":[49],"geometric":[51],"relationships).":[52],"Consequently,":[53],"methods":[55],"usually":[56],"perform":[57],"poorly":[58],"compared":[59],"conventional":[62],"image":[63,94],"counterparts.":[64],"Considering":[65],"that":[66,162,201],"traditional":[67],"images":[68],"event":[70,106,134],"signals":[71],"share":[72],"considerable":[73],"visual":[74],"information,":[75],"this":[76],"paper":[77],"aims":[78],"improve":[80,167],"feature":[82,130],"extraction":[83,131],"ability":[84],"by":[88,176],"using":[89],"knowledge":[90,121],"distilled":[91],"from":[92],"domain":[95],"additionally":[97],"provide":[98],"explicit":[99],"feature-level":[100],"supervision":[101],"learning":[104,116],"data.":[107],"Specifically,":[108],"we":[109,181],"propose":[110],"simple":[112],"yet":[113],"effective":[114],"distillation":[115,122],"framework,":[117],"including":[118],"multi-level":[119],"customized":[120],"constraints.":[123],"Our":[124],"framework":[125,146,164],"can":[126,165,202],"significantly":[127],"boost":[128],"process":[132],"data":[135],"is":[137,213],"applicable":[138],"various":[140],"downstream":[141],"tasks.":[142,218],"We":[143],"evaluate":[144,204],"our":[145,163],"on":[147,173],"high-level":[148],"low-level":[150],"tasks,":[151],"i.e.,":[152],"object":[153,189],"classification":[154],"optical":[156],"flow":[157],"prediction.":[158],"Experimental":[159],"results":[160],"show":[161],"effectively":[166],"performance":[169],"both":[174],"tasks":[175],"large":[178],"margin.":[179],"Furthermore,":[180],"present":[182],"10K":[184],"dataset":[185,192],"(CEP-DVS)":[186],"classification.":[190],"This":[191],"consists":[193],"samples":[195],"recorded":[196],"under":[197],"random":[198],"motion":[199,206],"trajectories":[200],"better":[203],"robustness":[207],"model":[211],"compatible":[214],"with":[215],"multi-modality":[216]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W3158810259","counts_by_year":[{"year":2024,"cited_by_count":10},{"year":2023,"cited_by_count":8},{"year":2022,"cited_by_count":4},{"year":2021,"cited_by_count":3}],"updated_date":"2024-12-30T13:49:27.702371","created_date":"2021-05-10"}