{"id":"https://openalex.org/W3097336090","doi":"https://doi.org/10.1109/tip.2020.3028289","title":"DPANet: Depth Potentiality-Aware Gated Attention Network for RGB-D Salient Object Detection","display_name":"DPANet: Depth Potentiality-Aware Gated Attention Network for RGB-D Salient Object Detection","publication_year":2020,"publication_date":"2020-11-03","ids":{"openalex":"https://openalex.org/W3097336090","doi":"https://doi.org/10.1109/tip.2020.3028289","mag":"3097336090","pmid":"https://pubmed.ncbi.nlm.nih.gov/33141667"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/tip.2020.3028289","pdf_url":null,"source":{"id":"https://openalex.org/S4210173141","display_name":"IEEE Transactions on Image Processing","issn_l":"1057-7149","issn":["1057-7149","1941-0042"],"is_oa":false,"is_in_doaj":false,"is_core":true,"host_organization":"https://openalex.org/P4310319808","host_organization_name":"Institute of Electrical and Electronics Engineers","host_organization_lineage":["https://openalex.org/P4310319808"],"host_organization_lineage_names":["Institute of Electrical and Electronics Engineers"],"type":"journal"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"journal-article","indexed_in":["arxiv","crossref","datacite"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"https://arxiv.org/pdf/2003.08608","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5016136898","display_name":"Zuyao Chen","orcid":"https://orcid.org/0000-0002-7344-1101"},"institutions":[{"id":"https://openalex.org/I4210165038","display_name":"University of Chinese Academy of Sciences","ror":"https://ror.org/05qbk4x57","country_code":"CN","type":"education","lineage":["https://openalex.org/I19820366","https://openalex.org/I4210165038"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Zuyao Chen","raw_affiliation_strings":["School of Computer Science and Technology, University of Chinese Academy of Sciences, Beijing, China"],"affiliations":[{"raw_affiliation_string":"School of Computer Science and Technology, University of Chinese Academy of Sciences, Beijing, China","institution_ids":["https://openalex.org/I4210165038"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5091558139","display_name":"Runmin Cong","orcid":"https://orcid.org/0000-0003-0972-4008"},"institutions":[{"id":"https://openalex.org/I21193070","display_name":"Beijing Jiaotong University","ror":"https://ror.org/01yj56c84","country_code":"CN","type":"education","lineage":["https://openalex.org/I21193070"]},{"id":"https://openalex.org/I168719708","display_name":"City University of Hong Kong","ror":"https://ror.org/03q8dnn23","country_code":"HK","type":"education","lineage":["https://openalex.org/I168719708"]}],"countries":["CN","HK"],"is_corresponding":false,"raw_author_name":"Runmin Cong","raw_affiliation_strings":["Beijing Key Laboratory of Advanced Information Science and Network Technology, Beijing, China","Department of Computer Science, City University of Hong Kong, Hong Kong SAR, China","Institute of Information Science, Beijing Jiaotong University, Beijing, China"],"affiliations":[{"raw_affiliation_string":"Beijing Key Laboratory of Advanced Information Science and Network Technology, Beijing, China","institution_ids":[]},{"raw_affiliation_string":"Institute of Information Science, Beijing Jiaotong University, Beijing, China","institution_ids":["https://openalex.org/I21193070"]},{"raw_affiliation_string":"Department of Computer Science, City University of Hong Kong, Hong Kong SAR, China","institution_ids":["https://openalex.org/I168719708"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5089092566","display_name":"Qianqian Xu","orcid":"https://orcid.org/0000-0002-3512-7277"},"institutions":[{"id":"https://openalex.org/I4210090176","display_name":"Institute of Computing Technology","ror":"https://ror.org/0090r4d87","country_code":"CN","type":"facility","lineage":["https://openalex.org/I19820366","https://openalex.org/I4210090176"]},{"id":"https://openalex.org/I19820366","display_name":"Chinese Academy of Sciences","ror":"https://ror.org/034t30j35","country_code":"CN","type":"government","lineage":["https://openalex.org/I19820366"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Qianqian Xu","raw_affiliation_strings":["Key Laboratory of Intelligent Information Processing, Institute of Computing Technology, Chinese Academy of Sciences, Beijing, China"],"affiliations":[{"raw_affiliation_string":"Key Laboratory of Intelligent Information Processing, Institute of Computing Technology, Chinese Academy of Sciences, Beijing, China","institution_ids":["https://openalex.org/I4210090176","https://openalex.org/I19820366"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5028597017","display_name":"Qingming Huang","orcid":"https://orcid.org/0000-0001-7542-296X"},"institutions":[{"id":"https://openalex.org/I4210165038","display_name":"University of Chinese Academy of Sciences","ror":"https://ror.org/05qbk4x57","country_code":"CN","type":"education","lineage":["https://openalex.org/I19820366","https://openalex.org/I4210165038"]},{"id":"https://openalex.org/I4210090176","display_name":"Institute of Computing Technology","ror":"https://ror.org/0090r4d87","country_code":"CN","type":"facility","lineage":["https://openalex.org/I19820366","https://openalex.org/I4210090176"]},{"id":"https://openalex.org/I19820366","display_name":"Chinese Academy of Sciences","ror":"https://ror.org/034t30j35","country_code":"CN","type":"government","lineage":["https://openalex.org/I19820366"]},{"id":"https://openalex.org/I4210136793","display_name":"Peng Cheng Laboratory","ror":"https://ror.org/03qdqbt06","country_code":"CN","type":"facility","lineage":["https://openalex.org/I4210136793"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Qingming Huang","raw_affiliation_strings":["Key Laboratory of Big Data Mining and Knowledge Management (BDKM), University of Chinese Academy of Sciences, Beijing, China","Key Laboratory of Intelligent Information Processing, Institute of Computing Technology, Chinese Academy of Sciences, Beijing, China","Peng Cheng Laboratory, Shenzhen, China","School of Computer Science and Technology, University of Chinese Academy of Sciences, Beijing, China"],"affiliations":[{"raw_affiliation_string":"Key Laboratory of Big Data Mining and Knowledge Management (BDKM), University of Chinese Academy of Sciences, Beijing, China","institution_ids":["https://openalex.org/I4210165038"]},{"raw_affiliation_string":"School of Computer Science and Technology, University of Chinese Academy of Sciences, Beijing, China","institution_ids":["https://openalex.org/I4210165038"]},{"raw_affiliation_string":"Key Laboratory of Intelligent Information Processing, Institute of Computing Technology, Chinese Academy of Sciences, Beijing, China","institution_ids":["https://openalex.org/I4210090176","https://openalex.org/I19820366"]},{"raw_affiliation_string":"Peng Cheng Laboratory, Shenzhen, China","institution_ids":["https://openalex.org/I4210136793"]}]}],"institution_assertions":[],"countries_distinct_count":2,"institutions_distinct_count":6,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":15.869,"has_fulltext":true,"fulltext_origin":"pdf","cited_by_count":201,"citation_normalized_percentile":{"value":0.999947,"is_in_top_1_percent":true,"is_in_top_10_percent":true},"cited_by_percentile_year":{"min":99,"max":100},"biblio":{"volume":"30","issue":null,"first_page":"7012","last_page":"7024"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T11605","display_name":"Visual Attention and Saliency Detection","score":1.0,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T11605","display_name":"Visual Attention and Saliency Detection","score":1.0,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11165","display_name":"Image and Video Quality Assessment","score":0.9856,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10971","display_name":"Olfactory and Sensory Function Studies","score":0.9774,"subfield":{"id":"https://openalex.org/subfields/2809","display_name":"Sensory Systems"},"field":{"id":"https://openalex.org/fields/28","display_name":"Neuroscience"},"domain":{"id":"https://openalex.org/domains/1","display_name":"Life Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/rgb-color-model","display_name":"RGB color model","score":0.5888423},{"id":"https://openalex.org/keywords/complementarity","display_name":"Complementarity (molecular biology)","score":0.50433815},{"id":"https://openalex.org/keywords/depth-map","display_name":"Depth map","score":0.49155793},{"id":"https://openalex.org/keywords/sensor-fusion","display_name":"Sensor Fusion","score":0.41130528}],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.68973124},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.6690251},{"id":"https://openalex.org/C82990744","wikidata":"https://www.wikidata.org/wiki/Q166194","display_name":"RGB color model","level":2,"score":0.5888423},{"id":"https://openalex.org/C202269582","wikidata":"https://www.wikidata.org/wiki/Q2644277","display_name":"Complementarity (molecular biology)","level":2,"score":0.50433815},{"id":"https://openalex.org/C141268832","wikidata":"https://www.wikidata.org/wiki/Q2940499","display_name":"Depth map","level":3,"score":0.49155793},{"id":"https://openalex.org/C31972630","wikidata":"https://www.wikidata.org/wiki/Q844240","display_name":"Computer vision","level":1,"score":0.4614699},{"id":"https://openalex.org/C2776151529","wikidata":"https://www.wikidata.org/wiki/Q3045304","display_name":"Object detection","level":3,"score":0.45718712},{"id":"https://openalex.org/C33954974","wikidata":"https://www.wikidata.org/wiki/Q486494","display_name":"Sensor fusion","level":2,"score":0.41130528},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.3859524},{"id":"https://openalex.org/C124101348","wikidata":"https://www.wikidata.org/wiki/Q172491","display_name":"Data mining","level":1,"score":0.36077118},{"id":"https://openalex.org/C115961682","wikidata":"https://www.wikidata.org/wiki/Q860623","display_name":"Image (mathematics)","level":2,"score":0.14840683},{"id":"https://openalex.org/C54355233","wikidata":"https://www.wikidata.org/wiki/Q7162","display_name":"Genetics","level":1,"score":0.0},{"id":"https://openalex.org/C86803240","wikidata":"https://www.wikidata.org/wiki/Q420","display_name":"Biology","level":0,"score":0.0}],"mesh":[],"locations_count":3,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/tip.2020.3028289","pdf_url":null,"source":{"id":"https://openalex.org/S4210173141","display_name":"IEEE Transactions on Image Processing","issn_l":"1057-7149","issn":["1057-7149","1941-0042"],"is_oa":false,"is_in_doaj":false,"is_core":true,"host_organization":"https://openalex.org/P4310319808","host_organization_name":"Institute of Electrical and Electronics Engineers","host_organization_lineage":["https://openalex.org/P4310319808"],"host_organization_lineage_names":["Institute of Electrical and Electronics Engineers"],"type":"journal"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2003.08608","pdf_url":"https://arxiv.org/pdf/2003.08608","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":false,"landing_page_url":"https://api.datacite.org/dois/10.48550/arxiv.2003.08608","pdf_url":null,"source":{"id":"https://openalex.org/S4393179698","display_name":"DataCite API","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I4210145204","host_organization_name":"DataCite","host_organization_lineage":["https://openalex.org/I4210145204"],"host_organization_lineage_names":["DataCite"],"type":"metadata"},"license":null,"license_id":null,"version":null}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2003.08608","pdf_url":"https://arxiv.org/pdf/2003.08608","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[],"grants":[{"funder":"https://openalex.org/F4320321001","funder_display_name":"National Natural Science Foundation of China","award_id":"61836002"},{"funder":"https://openalex.org/F4320321001","funder_display_name":"National Natural Science Foundation of China","award_id":"U1636214"},{"funder":"https://openalex.org/F4320321001","funder_display_name":"National Natural Science Foundation of China","award_id":"62002014"},{"funder":"https://openalex.org/F4320321001","funder_display_name":"National Natural Science Foundation of China","award_id":"61931008"},{"funder":"https://openalex.org/F4320321001","funder_display_name":"National Natural Science Foundation of China","award_id":"61620106009"},{"funder":"https://openalex.org/F4320321001","funder_display_name":"National Natural Science Foundation of China","award_id":"61672514"},{"funder":"https://openalex.org/F4320321001","funder_display_name":"National Natural Science Foundation of China","award_id":"61976202"},{"funder":"https://openalex.org/F4320321133","funder_display_name":"Chinese Academy of Sciences","award_id":null},{"funder":"https://openalex.org/F4320321543","funder_display_name":"China Postdoctoral Science Foundation","award_id":"2020T130050"},{"funder":"https://openalex.org/F4320321543","funder_display_name":"China Postdoctoral Science Foundation","award_id":"2019M660438"},{"funder":"https://openalex.org/F4320322919","funder_display_name":"Natural Science Foundation of Beijing Municipality","award_id":"4182079"},{"funder":"https://openalex.org/F4320323540","funder_display_name":"Society of Hong Kong Scholars","award_id":null},{"funder":"https://openalex.org/F4320334978","funder_display_name":"Beijing Nova Program","award_id":"Z201100006820016"},{"funder":"https://openalex.org/F4320335777","funder_display_name":"National Key Research and Development Program of China","award_id":"2018AAA0102003"},{"funder":"https://openalex.org/F4320335787","funder_display_name":"Fundamental Research Funds for the Central Universities","award_id":"2019RC039"}],"datasets":[],"versions":["https://openalex.org/W3011305844","https://openalex.org/W3097336090"],"referenced_works_count":64,"referenced_works":["https://openalex.org/W1536680647","https://openalex.org/W1565402342","https://openalex.org/W1592631677","https://openalex.org/W1966025376","https://openalex.org/W1976409045","https://openalex.org/W1976977741","https://openalex.org/W1986670485","https://openalex.org/W1993713494","https://openalex.org/W2039298799","https://openalex.org/W2046835352","https://openalex.org/W2047670868","https://openalex.org/W2050159143","https://openalex.org/W2053138020","https://openalex.org/W20683899","https://openalex.org/W2086866337","https://openalex.org/W2100470808","https://openalex.org/W2128340050","https://openalex.org/W2133059825","https://openalex.org/W2163605009","https://openalex.org/W2194775991","https://openalex.org/W2337762808","https://openalex.org/W2346506533","https://openalex.org/W2461758788","https://openalex.org/W2514658199","https://openalex.org/W2520640394","https://openalex.org/W2523532944","https://openalex.org/W2569272946","https://openalex.org/W2585592883","https://openalex.org/W2620958690","https://openalex.org/W2765838470","https://openalex.org/W2765934933","https://openalex.org/W2766315367","https://openalex.org/W2767623212","https://openalex.org/W2793668851","https://openalex.org/W2798857366","https://openalex.org/W2887522866","https://openalex.org/W2897819140","https://openalex.org/W2907643346","https://openalex.org/W2909381593","https://openalex.org/W2939217524","https://openalex.org/W2948300571","https://openalex.org/W2948510860","https://openalex.org/W2957414648","https://openalex.org/W2961348656","https://openalex.org/W2963091558","https://openalex.org/W2963136160","https://openalex.org/W2963572583","https://openalex.org/W2963685207","https://openalex.org/W2963706010","https://openalex.org/W2963868681","https://openalex.org/W2963998427","https://openalex.org/W2964352379","https://openalex.org/W2964738399","https://openalex.org/W2969377765","https://openalex.org/W2990984982","https://openalex.org/W2997316506","https://openalex.org/W3002301267","https://openalex.org/W3006465601","https://openalex.org/W3034609900","https://openalex.org/W3105290831","https://openalex.org/W3105291825","https://openalex.org/W3108608656","https://openalex.org/W4288798638","https://openalex.org/W4385245566"],"related_works":["https://openalex.org/W4383553409","https://openalex.org/W4285172739","https://openalex.org/W3139833644","https://openalex.org/W3123208392","https://openalex.org/W3123110765","https://openalex.org/W2521519254","https://openalex.org/W2212953222","https://openalex.org/W2104948296","https://openalex.org/W2003805688","https://openalex.org/W1735800226"],"abstract_inverted_index":{"There":[0],"are":[1,39],"two":[2,37,79,133],"main":[3],"issues":[4,80],"in":[5,81,123,146],"RGB-D":[6,20],"salient":[7],"object":[8],"detection:":[9],"(1)":[10],"how":[11,23],"to":[12,24,48,93,136,158],"effectively":[13,103],"integrate":[14,104],"the":[15,18,26,30,44,52,57,66,70,96,99,105,110,114,118,129,138,147,151,177,180],"complementarity":[16],"from":[17,29,162],"cross-modal":[19,106,164],"data;":[21],"(2)":[22],"prevent":[25,137],"contamination":[27,139],"effect":[28],"unreliable":[31],"depth":[32,60,100,111,121],"map.":[33],"In":[34,73],"fact,":[35],"these":[36,78],"problems":[38],"linked":[40],"and":[41,55,86,102,127,185],"intertwined,":[42],"but":[43],"previous":[45],"methods":[46,172],"tend":[47],"focus":[49],"only":[50],"on":[51,173],"first":[53],"problem":[54],"ignore":[56],"consideration":[58],"of":[59,98,120,132,179],"map":[61,101],"quality,":[62],"which":[63],"may":[64],"yield":[65],"model":[67,84,95],"fall":[68],"into":[69],"sub-optimal":[71],"state.":[72],"this":[74],"paper,":[75],"we":[76],"address":[77],"a":[82,88,124,155,163],"holistic":[83],"synergistically,":[85],"propose":[87],"novel":[89],"network":[90,115],"named":[91],"DPANet":[92],"explicitly":[94],"potentiality":[97,112,119],"complementarity.":[107],"By":[108],"introducing":[109],"perception,":[113],"can":[116],"perceive":[117],"information":[122],"learning-based":[125],"manner,":[126],"guide":[128],"fusion":[130,148],"process":[131,149],"modal":[134],"data":[135],"occurred.":[140],"The":[141],"gated":[142],"multi-modality":[143],"attention":[144,152],"module":[145],"exploits":[150],"mechanism":[153],"with":[154,169],"gate":[156],"controller":[157],"capture":[159],"long-range":[160],"dependencies":[161],"perspective.":[165],"Experimental":[166],"results":[167],"compared":[168],"15":[170],"state-of-the-art":[171],"8":[174],"datasets":[175],"demonstrate":[176],"validity":[178],"proposed":[181],"approach":[182],"both":[183],"quantitatively":[184],"qualitatively.":[186]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W3097336090","counts_by_year":[{"year":2024,"cited_by_count":32},{"year":2023,"cited_by_count":51},{"year":2022,"cited_by_count":65},{"year":2021,"cited_by_count":46},{"year":2020,"cited_by_count":4}],"updated_date":"2025-01-20T09:50:48.759893","created_date":"2020-11-09"}