{"id":"https://openalex.org/W3098078148","doi":"https://doi.org/10.1109/tip.2020.2985225","title":"Efficient and Effective Context-Based Convolutional Entropy Modeling for Image Compression","display_name":"Efficient and Effective Context-Based Convolutional Entropy Modeling for Image Compression","publication_year":2020,"publication_date":"2020-01-01","ids":{"openalex":"https://openalex.org/W3098078148","doi":"https://doi.org/10.1109/tip.2020.2985225","mag":"3098078148","pmid":"https://pubmed.ncbi.nlm.nih.gov/32305914"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/tip.2020.2985225","pdf_url":null,"source":{"id":"https://openalex.org/S4210173141","display_name":"IEEE Transactions on Image Processing","issn_l":"1057-7149","issn":["1057-7149","1941-0042"],"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":true,"is_core":true,"host_organization":"https://openalex.org/P4310319808","host_organization_name":"Institute of Electrical and Electronics Engineers","host_organization_lineage":["https://openalex.org/P4310319808"],"host_organization_lineage_names":["Institute of Electrical and Electronics Engineers"],"type":"journal"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"journal-article","indexed_in":["arxiv","crossref","datacite","pubmed"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"https://arxiv.org/pdf/1906.10057","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5100399466","display_name":"Mu Li","orcid":"https://orcid.org/0000-0002-7327-3304"},"institutions":[{"id":"https://openalex.org/I14243506","display_name":"Hong Kong Polytechnic University","ror":"https://ror.org/0030zas98","country_code":"HK","type":"funder","lineage":["https://openalex.org/I14243506"]}],"countries":["HK"],"is_corresponding":false,"raw_author_name":"Mu Li","raw_affiliation_strings":["[Hong Kong Polytechnic Univ.]"],"affiliations":[{"raw_affiliation_string":"[Hong Kong Polytechnic Univ.]","institution_ids":["https://openalex.org/I14243506"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5020029652","display_name":"Kede Ma","orcid":"https://orcid.org/0000-0001-8608-1128"},"institutions":[{"id":"https://openalex.org/I168719708","display_name":"City University of Hong Kong","ror":"https://ror.org/03q8dnn23","country_code":"HK","type":"funder","lineage":["https://openalex.org/I168719708"]}],"countries":["HK"],"is_corresponding":false,"raw_author_name":"Kede Ma","raw_affiliation_strings":["Department of Computer Science, City University of Hong Kong, Hong Kong"],"affiliations":[{"raw_affiliation_string":"Department of Computer Science, City University of Hong Kong, Hong Kong","institution_ids":["https://openalex.org/I168719708"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5045562050","display_name":"Jane You","orcid":"https://orcid.org/0000-0002-8181-4836"},"institutions":[{"id":"https://openalex.org/I14243506","display_name":"Hong Kong Polytechnic University","ror":"https://ror.org/0030zas98","country_code":"HK","type":"funder","lineage":["https://openalex.org/I14243506"]}],"countries":["HK"],"is_corresponding":false,"raw_author_name":"Jane You","raw_affiliation_strings":["[Department of computing, The Hong Kong Polytechnic University, Hong Kong]"],"affiliations":[{"raw_affiliation_string":"[Department of computing, The Hong Kong Polytechnic University, Hong Kong]","institution_ids":["https://openalex.org/I14243506"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5100325058","display_name":"David Zhang","orcid":"https://orcid.org/0000-0002-5027-5286"},"institutions":[{"id":"https://openalex.org/I4210116924","display_name":"Chinese University of Hong Kong, Shenzhen","ror":"https://ror.org/02d5ks197","country_code":"CN","type":"education","lineage":["https://openalex.org/I177725633","https://openalex.org/I180726961","https://openalex.org/I4210116924"]},{"id":"https://openalex.org/I4210099586","display_name":"Shenzhen Research Institute of Big Data","ror":"https://ror.org/00z1gwf89","country_code":"CN","type":"funder","lineage":["https://openalex.org/I4210099586"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"David Zhang","raw_affiliation_strings":["School of Science and Engineering, The Chinese University of Hong Kong (Shenzhen), Shenzhen, China; Shenzhen Institute of Artificial Intelligence and Robotics for Society, Shenzhen, China; Shenzhen Research Institute of Big Data, Shenzhen, China"],"affiliations":[{"raw_affiliation_string":"School of Science and Engineering, The Chinese University of Hong Kong (Shenzhen), Shenzhen, China; Shenzhen Institute of Artificial Intelligence and Robotics for Society, Shenzhen, China; Shenzhen Research Institute of Big Data, Shenzhen, China","institution_ids":["https://openalex.org/I4210116924","https://openalex.org/I4210099586"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5100636655","display_name":"Wangmeng Zuo","orcid":"https://orcid.org/0000-0002-3330-783X"},"institutions":[{"id":"https://openalex.org/I204983213","display_name":"Harbin Institute of Technology","ror":"https://ror.org/01yqg2h08","country_code":"CN","type":"funder","lineage":["https://openalex.org/I204983213"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Wangmeng Zuo","raw_affiliation_strings":["School of Computer Science and Technology, Harbin Institute of Technology, Harbin, China"],"affiliations":[{"raw_affiliation_string":"School of Computer Science and Technology, Harbin Institute of Technology, Harbin, China","institution_ids":["https://openalex.org/I204983213"]}]}],"institution_assertions":[],"countries_distinct_count":2,"institutions_distinct_count":5,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":4.685,"has_fulltext":true,"fulltext_origin":"pdf","cited_by_count":20,"citation_normalized_percentile":{"value":0.999944,"is_in_top_1_percent":true,"is_in_top_10_percent":true},"cited_by_percentile_year":{"min":91,"max":92},"biblio":{"volume":"29","issue":null,"first_page":"5900","last_page":"5911"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10901","display_name":"Advanced Data Compression Techniques","score":1.0,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10901","display_name":"Advanced Data Compression Techniques","score":1.0,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10688","display_name":"Image and Signal Denoising Methods","score":0.9995,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11105","display_name":"Advanced Image Processing Techniques","score":0.9994,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/lossy-compression","display_name":"Lossy compression","score":0.57634425}],"concepts":[{"id":"https://openalex.org/C81081738","wikidata":"https://www.wikidata.org/wiki/Q55542","display_name":"Lossless compression","level":3,"score":0.60349375},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.5783786},{"id":"https://openalex.org/C165021410","wikidata":"https://www.wikidata.org/wiki/Q55564","display_name":"Lossy compression","level":2,"score":0.57634425},{"id":"https://openalex.org/C1769480","wikidata":"https://www.wikidata.org/wiki/Q1345239","display_name":"Entropy encoding","level":3,"score":0.56546396},{"id":"https://openalex.org/C11413529","wikidata":"https://www.wikidata.org/wiki/Q8366","display_name":"Algorithm","level":1,"score":0.52827984},{"id":"https://openalex.org/C13481523","wikidata":"https://www.wikidata.org/wiki/Q412438","display_name":"Image compression","level":4,"score":0.52363825},{"id":"https://openalex.org/C78548338","wikidata":"https://www.wikidata.org/wiki/Q2493","display_name":"Data compression","level":2,"score":0.46487477},{"id":"https://openalex.org/C106301342","wikidata":"https://www.wikidata.org/wiki/Q4117933","display_name":"Entropy (arrow of time)","level":2,"score":0.45137444},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.44835007},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.37321213},{"id":"https://openalex.org/C80444323","wikidata":"https://www.wikidata.org/wiki/Q2878974","display_name":"Theoretical computer science","level":1,"score":0.3411063},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.32852018},{"id":"https://openalex.org/C9417928","wikidata":"https://www.wikidata.org/wiki/Q1070689","display_name":"Image processing","level":3,"score":0.29691222},{"id":"https://openalex.org/C115961682","wikidata":"https://www.wikidata.org/wiki/Q860623","display_name":"Image (mathematics)","level":2,"score":0.11914262},{"id":"https://openalex.org/C121332964","wikidata":"https://www.wikidata.org/wiki/Q413","display_name":"Physics","level":0,"score":0.0},{"id":"https://openalex.org/C62520636","wikidata":"https://www.wikidata.org/wiki/Q944","display_name":"Quantum mechanics","level":1,"score":0.0}],"mesh":[],"locations_count":4,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/tip.2020.2985225","pdf_url":null,"source":{"id":"https://openalex.org/S4210173141","display_name":"IEEE Transactions on Image Processing","issn_l":"1057-7149","issn":["1057-7149","1941-0042"],"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":true,"is_core":true,"host_organization":"https://openalex.org/P4310319808","host_organization_name":"Institute of Electrical and Electronics Engineers","host_organization_lineage":["https://openalex.org/P4310319808"],"host_organization_lineage_names":["Institute of Electrical and Electronics Engineers"],"type":"journal"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/1906.10057","pdf_url":"https://arxiv.org/pdf/1906.10057","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":false,"landing_page_url":"https://pubmed.ncbi.nlm.nih.gov/32305914","pdf_url":null,"source":{"id":"https://openalex.org/S4306525036","display_name":"PubMed","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I1299303238","host_organization_name":"National Institutes of Health","host_organization_lineage":["https://openalex.org/I1299303238"],"host_organization_lineage_names":["National Institutes of Health"],"type":"repository"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},{"is_oa":false,"landing_page_url":"https://api.datacite.org/dois/10.48550/arxiv.1906.10057","pdf_url":null,"source":{"id":"https://openalex.org/S4393179698","display_name":"DataCite API","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I4210145204","host_organization_name":"DataCite","host_organization_lineage":["https://openalex.org/I4210145204"],"host_organization_lineage_names":["DataCite"],"type":"metadata"},"license":null,"license_id":null,"version":null}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/1906.10057","pdf_url":"https://arxiv.org/pdf/1906.10057","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[],"grants":[{"funder":"https://openalex.org/F4320321001","funder_display_name":"National Natural Science Foundation of China","award_id":"61872118"},{"funder":"https://openalex.org/F4320321001","funder_display_name":"National Natural Science Foundation of China","award_id":"61671182"},{"funder":"https://openalex.org/F4320321001","funder_display_name":"National Natural Science Foundation of China","award_id":"U19A2073"}],"datasets":[],"versions":["https://openalex.org/W3017235483","https://openalex.org/W3098078148"],"referenced_works_count":55,"referenced_works":["https://openalex.org/W1522301498","https://openalex.org/W1580389772","https://openalex.org/W1583656173","https://openalex.org/W179875071","https://openalex.org/W1995875735","https://openalex.org/W2031614119","https://openalex.org/W2060108852","https://openalex.org/W2085518012","https://openalex.org/W2099111195","https://openalex.org/W2099471712","https://openalex.org/W2099563019","https://openalex.org/W2113945798","https://openalex.org/W2129652681","https://openalex.org/W2129768577","https://openalex.org/W2140196014","https://openalex.org/W2150593711","https://openalex.org/W2166087152","https://openalex.org/W2194775991","https://openalex.org/W2267126114","https://openalex.org/W2276024283","https://openalex.org/W2300242332","https://openalex.org/W2319920447","https://openalex.org/W2402268235","https://openalex.org/W2423557781","https://openalex.org/W2469490737","https://openalex.org/W2476548250","https://openalex.org/W2478708596","https://openalex.org/W2508457857","https://openalex.org/W2593493485","https://openalex.org/W2597747080","https://openalex.org/W2604392022","https://openalex.org/W2732044853","https://openalex.org/W2768340063","https://openalex.org/W2782648016","https://openalex.org/W2808746463","https://openalex.org/W2810544457","https://openalex.org/W2892278106","https://openalex.org/W2949361041","https://openalex.org/W2953318193","https://openalex.org/W2962676454","https://openalex.org/W2962750131","https://openalex.org/W2962790638","https://openalex.org/W2962891349","https://openalex.org/W2963149687","https://openalex.org/W2963446712","https://openalex.org/W2963449488","https://openalex.org/W2963636093","https://openalex.org/W2963755523","https://openalex.org/W2964098744","https://openalex.org/W2964121744","https://openalex.org/W2964164354","https://openalex.org/W4254197176","https://openalex.org/W4294567867","https://openalex.org/W4297659253","https://openalex.org/W4320013936"],"related_works":["https://openalex.org/W4327499886","https://openalex.org/W4313046148","https://openalex.org/W4294006383","https://openalex.org/W4210455546","https://openalex.org/W3210332869","https://openalex.org/W3180760233","https://openalex.org/W3080614128","https://openalex.org/W2547124190","https://openalex.org/W2385628723","https://openalex.org/W2096442341"],"abstract_inverted_index":{"Precise":[0],"estimation":[1],"of":[2,6,21,94,106,112,136,144,156,165],"the":[3,17,26,110,125,133,141,151,153,179,194,205,214],"probabilistic":[4],"structure":[5],"natural":[7],"images":[8],"plays":[9],"an":[10,137],"essential":[11],"role":[12],"in":[13,37,117],"image":[14,24,122,138],"compression.":[15,123],"Despite":[16],"recent":[18],"remarkable":[19],"success":[20],"end-to-end":[22],"optimized":[23],"compression,":[25],"latent":[27],"codes":[28],"are":[29,82,170],"usually":[30],"assumed":[31],"to":[32,39,84,98,132,139,213],"be":[33],"fully":[34],"statistically":[35],"factorized":[36],"order":[38,75],"simplify":[40],"entropy":[41,67,91,115,148,181],"modeling.":[42,68],"However,":[43],"this":[44],"assumption":[45],"generally":[46,208],"does":[47],"not":[48],"hold":[49],"true":[50],"and":[51,65,76,120,186,196],"may":[52],"hinder":[53],"compression":[54,211],"performance.":[55,191],"Here":[56],"we":[57,127],"present":[58],"context-based":[59],"convolutional":[60],"networks":[61],"(CCNs)":[62],"for":[63,89,114,147,189],"efficient":[64],"effective":[66],"In":[69],"particular,":[70],"a":[71,77,130,162],"3D":[72,78],"zigzag":[73],"scanning":[74],"code":[79,146,158],"dividing":[80],"technique":[81],"introduced":[83],"define":[85],"proper":[86],"coding":[87],"contexts":[88],"parallel":[90],"decoding,":[92],"both":[93,118],"which":[95],"boil":[96],"down":[97],"place":[99],"translation-invariant":[100],"binary":[101],"masks":[102],"on":[103,193],"convolution":[104],"filters":[105],"CCNs.":[107,174],"We":[108,175],"demonstrate":[109],"promise":[111],"CCNs":[113,207],"modeling":[116],"lossless":[119],"lossy":[121],"For":[124,150],"former,":[126],"directly":[128],"apply":[129],"CCN":[131],"binarized":[134],"representation":[135],"compute":[140],"Bernoulli":[142],"distribution":[143,155],"each":[145,157],"estimation.":[149],"latter,":[152],"categorical":[154],"is":[159],"represented":[160],"by":[161,172,204],"discretized":[163],"mixture":[164],"Gaussian":[166],"distributions,":[167],"whose":[168],"parameters":[169],"estimated":[171],"three":[173],"then":[176],"jointly":[177],"optimize":[178],"CCN-based":[180],"model":[182],"along":[183],"with":[184],"analysis":[185],"synthesis":[187],"transforms":[188],"rate-distortion":[190],"Experiments":[192],"Kodak":[195],"Tecnick":[197],"datasets":[198],"show":[199],"that":[200],"our":[201],"methods":[202],"powered":[203],"proposed":[206],"achieve":[209],"comparable":[210],"performance":[212],"state-of-the-art":[215],"while":[216],"being":[217],"much":[218],"faster.":[219]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W3098078148","counts_by_year":[{"year":2023,"cited_by_count":2},{"year":2022,"cited_by_count":3},{"year":2021,"cited_by_count":11},{"year":2020,"cited_by_count":4}],"updated_date":"2025-04-14T00:25:23.141309","created_date":"2020-11-23"}