{"id":"https://openalex.org/W2102193871","doi":"https://doi.org/10.1109/tip.2004.828197","title":"Nonlinear Prediction for Gaussian Mixture Image Models","display_name":"Nonlinear Prediction for Gaussian Mixture Image Models","publication_year":2004,"publication_date":"2004-05-13","ids":{"openalex":"https://openalex.org/W2102193871","doi":"https://doi.org/10.1109/tip.2004.828197","mag":"2102193871","pmid":"https://pubmed.ncbi.nlm.nih.gov/15648873"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/tip.2004.828197","pdf_url":null,"source":{"id":"https://openalex.org/S4210173141","display_name":"IEEE Transactions on Image Processing","issn_l":"1057-7149","issn":["1057-7149","1941-0042"],"is_oa":false,"is_in_doaj":false,"is_core":true,"host_organization":"https://openalex.org/P4310319808","host_organization_name":"Institute of Electrical and Electronics Engineers","host_organization_lineage":["https://openalex.org/P4310319808"],"host_organization_lineage_names":["Institute of Electrical and Electronics Engineers"],"type":"journal"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"journal-article","indexed_in":["crossref","pubmed"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5100400217","display_name":"Jun Zhang","orcid":"https://orcid.org/0000-0001-7835-9871"},"institutions":[{"id":"https://openalex.org/I43579087","display_name":"University of Wisconsin\u2013Milwaukee","ror":"https://ror.org/031q21x57","country_code":"US","type":"education","lineage":["https://openalex.org/I43579087"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"J. Zhang","raw_affiliation_strings":["Dept. of Electr. Eng. & Comput. Sci., Univ. of Wisconsin Milwaukee, Milwaukee, WI, USA"],"affiliations":[{"raw_affiliation_string":"Dept. of Electr. Eng. & Comput. Sci., Univ. of Wisconsin Milwaukee, Milwaukee, WI, USA","institution_ids":["https://openalex.org/I43579087"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5086868805","display_name":"Ding Ma","orcid":"https://orcid.org/0000-0001-9328-9584"},"institutions":[{"id":"https://openalex.org/I43579087","display_name":"University of Wisconsin\u2013Milwaukee","ror":"https://ror.org/031q21x57","country_code":"US","type":"education","lineage":["https://openalex.org/I43579087"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"D. Ma","raw_affiliation_strings":["Dept. of Electr. Eng. & Comput. Sci., Univ. of Wisconsin Milwaukee, Milwaukee, WI, USA"],"affiliations":[{"raw_affiliation_string":"Dept. of Electr. Eng. & Comput. Sci., Univ. of Wisconsin Milwaukee, Milwaukee, WI, USA","institution_ids":["https://openalex.org/I43579087"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":1,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":0.818,"has_fulltext":true,"fulltext_origin":"ngrams","cited_by_count":14,"citation_normalized_percentile":{"value":0.848354,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":83,"max":84},"biblio":{"volume":"13","issue":"6","first_page":"836","last_page":"847"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T11901","display_name":"Bayesian Methods and Mixture Models","score":0.9997,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T11901","display_name":"Bayesian Methods and Mixture Models","score":0.9997,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10824","display_name":"Image Retrieval and Classification Techniques","score":0.9806,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10689","display_name":"Remote-Sensing Image Classification","score":0.9782,"subfield":{"id":"https://openalex.org/subfields/2214","display_name":"Media Technology"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[],"concepts":[{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.66133356},{"id":"https://openalex.org/C160633673","wikidata":"https://www.wikidata.org/wiki/Q355198","display_name":"Pixel","level":2,"score":0.6274676},{"id":"https://openalex.org/C163716315","wikidata":"https://www.wikidata.org/wiki/Q901177","display_name":"Gaussian","level":2,"score":0.610751},{"id":"https://openalex.org/C132094186","wikidata":"https://www.wikidata.org/wiki/Q641585","display_name":"Clutter","level":3,"score":0.6053822},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.5774672},{"id":"https://openalex.org/C63099799","wikidata":"https://www.wikidata.org/wiki/Q17147001","display_name":"Image texture","level":4,"score":0.49583897},{"id":"https://openalex.org/C158622935","wikidata":"https://www.wikidata.org/wiki/Q660848","display_name":"Nonlinear system","level":2,"score":0.4870172},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.47470394},{"id":"https://openalex.org/C31972630","wikidata":"https://www.wikidata.org/wiki/Q844240","display_name":"Computer vision","level":1,"score":0.44472444},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.4422488},{"id":"https://openalex.org/C61224824","wikidata":"https://www.wikidata.org/wiki/Q2260434","display_name":"Mixture model","level":2,"score":0.44036022},{"id":"https://openalex.org/C9417928","wikidata":"https://www.wikidata.org/wiki/Q1070689","display_name":"Image processing","level":3,"score":0.4115203},{"id":"https://openalex.org/C11413529","wikidata":"https://www.wikidata.org/wiki/Q8366","display_name":"Algorithm","level":1,"score":0.40245405},{"id":"https://openalex.org/C115961682","wikidata":"https://www.wikidata.org/wiki/Q860623","display_name":"Image (mathematics)","level":2,"score":0.36526054},{"id":"https://openalex.org/C554190296","wikidata":"https://www.wikidata.org/wiki/Q47528","display_name":"Radar","level":2,"score":0.104242206},{"id":"https://openalex.org/C76155785","wikidata":"https://www.wikidata.org/wiki/Q418","display_name":"Telecommunications","level":1,"score":0.0},{"id":"https://openalex.org/C62520636","wikidata":"https://www.wikidata.org/wiki/Q944","display_name":"Quantum mechanics","level":1,"score":0.0},{"id":"https://openalex.org/C121332964","wikidata":"https://www.wikidata.org/wiki/Q413","display_name":"Physics","level":0,"score":0.0}],"mesh":[{"descriptor_ui":"D000465","descriptor_name":"Algorithms","qualifier_ui":"","qualifier_name":null,"is_major_topic":true},{"descriptor_ui":"D001185","descriptor_name":"Artificial Intelligence","qualifier_ui":"","qualifier_name":null,"is_major_topic":true},{"descriptor_ui":"D007089","descriptor_name":"Image Enhancement","qualifier_ui":"Q000379","qualifier_name":"methods","is_major_topic":true},{"descriptor_ui":"D007090","descriptor_name":"Image Interpretation, Computer-Assisted","qualifier_ui":"Q000379","qualifier_name":"methods","is_major_topic":true},{"descriptor_ui":"D015233","descriptor_name":"Models, Statistical","qualifier_ui":"","qualifier_name":null,"is_major_topic":true},{"descriptor_ui":"D017711","descriptor_name":"Nonlinear Dynamics","qualifier_ui":"","qualifier_name":null,"is_major_topic":true},{"descriptor_ui":"D010363","descriptor_name":"Pattern Recognition, Automated","qualifier_ui":"Q000379","qualifier_name":"methods","is_major_topic":true},{"descriptor_ui":"D003196","descriptor_name":"Computer Graphics","qualifier_ui":"","qualifier_name":null,"is_major_topic":false},{"descriptor_ui":"D003198","descriptor_name":"Computer Simulation","qualifier_ui":"","qualifier_name":null,"is_major_topic":false},{"descriptor_ui":"D007089","descriptor_name":"Image Enhancement","qualifier_ui":"","qualifier_name":null,"is_major_topic":false},{"descriptor_ui":"D007090","descriptor_name":"Image Interpretation, Computer-Assisted","qualifier_ui":"","qualifier_name":null,"is_major_topic":false},{"descriptor_ui":"D016247","descriptor_name":"Information Storage and Retrieval","qualifier_ui":"","qualifier_name":null,"is_major_topic":false},{"descriptor_ui":"D016247","descriptor_name":"Information Storage and Retrieval","qualifier_ui":"Q000379","qualifier_name":"methods","is_major_topic":false},{"descriptor_ui":"D008954","descriptor_name":"Models, Biological","qualifier_ui":"","qualifier_name":null,"is_major_topic":false},{"descriptor_ui":"D016011","descriptor_name":"Normal Distribution","qualifier_ui":"","qualifier_name":null,"is_major_topic":false},{"descriptor_ui":"D010363","descriptor_name":"Pattern Recognition, Automated","qualifier_ui":"","qualifier_name":null,"is_major_topic":false},{"descriptor_ui":"D015203","descriptor_name":"Reproducibility of Results","qualifier_ui":"","qualifier_name":null,"is_major_topic":false},{"descriptor_ui":"D012680","descriptor_name":"Sensitivity and Specificity","qualifier_ui":"","qualifier_name":null,"is_major_topic":false},{"descriptor_ui":"D012815","descriptor_name":"Signal Processing, Computer-Assisted","qualifier_ui":"","qualifier_name":null,"is_major_topic":false},{"descriptor_ui":"D013269","descriptor_name":"Stochastic Processes","qualifier_ui":"","qualifier_name":null,"is_major_topic":false},{"descriptor_ui":"D014584","descriptor_name":"User-Computer Interface","qualifier_ui":"","qualifier_name":null,"is_major_topic":false}],"locations_count":2,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/tip.2004.828197","pdf_url":null,"source":{"id":"https://openalex.org/S4210173141","display_name":"IEEE Transactions on Image Processing","issn_l":"1057-7149","issn":["1057-7149","1941-0042"],"is_oa":false,"is_in_doaj":false,"is_core":true,"host_organization":"https://openalex.org/P4310319808","host_organization_name":"Institute of Electrical and Electronics Engineers","host_organization_lineage":["https://openalex.org/P4310319808"],"host_organization_lineage_names":["Institute of Electrical and Electronics Engineers"],"type":"journal"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},{"is_oa":false,"landing_page_url":"https://pubmed.ncbi.nlm.nih.gov/15648873","pdf_url":null,"source":{"id":"https://openalex.org/S4306525036","display_name":"PubMed","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I1299303238","host_organization_name":"National Institutes of Health","host_organization_lineage":["https://openalex.org/I1299303238"],"host_organization_lineage_names":["National Institutes of Health"],"type":"repository"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":28,"referenced_works":["https://openalex.org/W115216132","https://openalex.org/W1579271636","https://openalex.org/W1623080549","https://openalex.org/W1992402718","https://openalex.org/W2015245929","https://openalex.org/W2043137160","https://openalex.org/W2049633694","https://openalex.org/W2067393152","https://openalex.org/W2084538386","https://openalex.org/W2096994706","https://openalex.org/W2100115174","https://openalex.org/W2110034185","https://openalex.org/W2112440119","https://openalex.org/W2115457941","https://openalex.org/W2117853077","https://openalex.org/W2124374894","https://openalex.org/W2148770191","https://openalex.org/W2157423413","https://openalex.org/W2162413715","https://openalex.org/W2166698530","https://openalex.org/W2488678869","https://openalex.org/W2797657588","https://openalex.org/W2797746357","https://openalex.org/W2944197974","https://openalex.org/W2977466517","https://openalex.org/W4212783130","https://openalex.org/W4231372369","https://openalex.org/W4232023503"],"related_works":["https://openalex.org/W3036468168","https://openalex.org/W2333771223","https://openalex.org/W2130674020","https://openalex.org/W2120056845","https://openalex.org/W2093748878","https://openalex.org/W2065914597","https://openalex.org/W2035264131","https://openalex.org/W1981531423","https://openalex.org/W1925461966","https://openalex.org/W1679012645"],"abstract_inverted_index":{"Prediction":[0],"is":[1,29,83,109,120,134],"an":[2,58,62],"essential":[3],"operation":[4],"in":[5,44,111],"many":[6],"image":[7,15,36,67,119],"processing":[8],"applications,":[9],"such":[10,45],"as":[11,24],"object":[12,112],"detection":[13,113],"and":[14,16,31,38],"video":[17],"compression.":[18],"When":[19],"the":[20,26,69,88,92,99,116,131,146],"images":[21],"are":[22,40,49,95],"modeled":[23],"Gaussian,":[25],"optimal":[27,47,59,147],"predictor":[28,60,76,108],"linear":[30,85,148],"easy":[32],"to":[33,51,122],"obtain.":[34,52],"However,":[35],"texture":[37,133],"clutter":[39],"often":[41],"non-Gaussian,":[42],"and,":[43],"cases,":[46],"predictors":[48],"difficult":[50],"In":[53],"this":[54,107],"paper,":[55],"we":[56],"derive":[57],"for":[61],"important":[63],"class":[64],"of":[65,87,98,106],"non-Gaussian":[66],"models,":[68],"block-based":[70],"multivariate":[71],"Gaussian":[72],"mixture":[73],"model.":[74],"This":[75],"has":[77],"a":[78,84],"special":[79],"nonlinear":[80],"structure:":[81],"it":[82,141],"combination":[86,93],"neighboring":[89,100],"pixels,":[90,101],"but":[91],"coefficients":[94],"also":[96],"functions":[97],"not":[102],"constants.":[103],"The":[104],"efficacy":[105],"demonstrated":[110],"experiments":[114],"where":[115],"prediction":[117],"error":[118],"used":[121],"identify":[123],"\"hidden\"":[124],"objects.":[125],"Experimental":[126],"results":[127],"indicate":[128],"that":[129],"when":[130],"background":[132],"nonlinear,":[135],"i.e.,":[136],"with":[137],"fast-switching":[138],"gray-level":[139],"patches,":[140],"performs":[142],"significantly":[143],"better":[144],"than":[145],"predictor.":[149]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W2102193871","counts_by_year":[{"year":2020,"cited_by_count":1},{"year":2019,"cited_by_count":1},{"year":2017,"cited_by_count":2},{"year":2015,"cited_by_count":1},{"year":2014,"cited_by_count":2}],"updated_date":"2024-12-15T17:29:03.288474","created_date":"2016-06-24"}