{"id":"https://openalex.org/W4390939995","doi":"https://doi.org/10.1109/tim.2024.3351238","title":"High-speed and accurate cascade detection method for chip surface defects","display_name":"High-speed and accurate cascade detection method for chip surface defects","publication_year":2024,"publication_date":"2024-01-01","ids":{"openalex":"https://openalex.org/W4390939995","doi":"https://doi.org/10.1109/tim.2024.3351238"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/tim.2024.3351238","pdf_url":null,"source":{"id":"https://openalex.org/S10892749","display_name":"IEEE Transactions on Instrumentation and Measurement","issn_l":"0018-9456","issn":["0018-9456","1557-9662"],"is_oa":false,"is_in_doaj":false,"is_core":true,"host_organization":"https://openalex.org/P4310319808","host_organization_name":"Institute of Electrical and Electronics Engineers","host_organization_lineage":["https://openalex.org/P4310319808"],"host_organization_lineage_names":["Institute of Electrical and Electronics Engineers"],"type":"journal"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"journal-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5103196761","display_name":"X. Zhu","orcid":"https://orcid.org/0009-0002-3695-7288"},"institutions":[{"id":"https://openalex.org/I3131625388","display_name":"University Town of Shenzhen","ror":"https://ror.org/05f5j6225","country_code":"CN","type":"education","lineage":["https://openalex.org/I3131625388"]},{"id":"https://openalex.org/I99065089","display_name":"Tsinghua University","ror":"https://ror.org/03cve4549","country_code":"CN","type":"education","lineage":["https://openalex.org/I99065089"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Xiaoming Zhu","raw_affiliation_strings":["Advanced Manufacturing Department, Tsinghua University, Shenzhen, China"],"affiliations":[{"raw_affiliation_string":"Advanced Manufacturing Department, Tsinghua University, Shenzhen, China","institution_ids":["https://openalex.org/I3131625388","https://openalex.org/I99065089"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5048895565","display_name":"Shuo Wang","orcid":"https://orcid.org/0000-0002-9689-3450"},"institutions":[{"id":"https://openalex.org/I3131625388","display_name":"University Town of Shenzhen","ror":"https://ror.org/05f5j6225","country_code":"CN","type":"education","lineage":["https://openalex.org/I3131625388"]},{"id":"https://openalex.org/I99065089","display_name":"Tsinghua University","ror":"https://ror.org/03cve4549","country_code":"CN","type":"education","lineage":["https://openalex.org/I99065089"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Shuo Wang","raw_affiliation_strings":["Advanced Manufacturing Department, Tsinghua University, Shenzhen, China"],"affiliations":[{"raw_affiliation_string":"Advanced Manufacturing Department, Tsinghua University, Shenzhen, China","institution_ids":["https://openalex.org/I3131625388","https://openalex.org/I99065089"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5083630845","display_name":"J. L. Su","orcid":"https://orcid.org/0000-0002-2889-1330"},"institutions":[{"id":"https://openalex.org/I3131625388","display_name":"University Town of Shenzhen","ror":"https://ror.org/05f5j6225","country_code":"CN","type":"education","lineage":["https://openalex.org/I3131625388"]},{"id":"https://openalex.org/I99065089","display_name":"Tsinghua University","ror":"https://ror.org/03cve4549","country_code":"CN","type":"education","lineage":["https://openalex.org/I99065089"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Junyu Su","raw_affiliation_strings":["Advanced Manufacturing Department, Tsinghua University, Shenzhen, China"],"affiliations":[{"raw_affiliation_string":"Advanced Manufacturing Department, Tsinghua University, Shenzhen, China","institution_ids":["https://openalex.org/I3131625388","https://openalex.org/I99065089"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5103205996","display_name":"Fei Liu","orcid":"https://orcid.org/0009-0003-6901-0661"},"institutions":[{"id":"https://openalex.org/I3131625388","display_name":"University Town of Shenzhen","ror":"https://ror.org/05f5j6225","country_code":"CN","type":"education","lineage":["https://openalex.org/I3131625388"]},{"id":"https://openalex.org/I99065089","display_name":"Tsinghua University","ror":"https://ror.org/03cve4549","country_code":"CN","type":"education","lineage":["https://openalex.org/I99065089"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Fei Liu","raw_affiliation_strings":["Advanced Manufacturing Department, Tsinghua University, Shenzhen, China"],"affiliations":[{"raw_affiliation_string":"Advanced Manufacturing Department, Tsinghua University, Shenzhen, China","institution_ids":["https://openalex.org/I3131625388","https://openalex.org/I99065089"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5035988413","display_name":"Long Zeng","orcid":"https://orcid.org/0000-0002-3090-6319"},"institutions":[{"id":"https://openalex.org/I3131625388","display_name":"University Town of Shenzhen","ror":"https://ror.org/05f5j6225","country_code":"CN","type":"education","lineage":["https://openalex.org/I3131625388"]},{"id":"https://openalex.org/I99065089","display_name":"Tsinghua University","ror":"https://ror.org/03cve4549","country_code":"CN","type":"education","lineage":["https://openalex.org/I99065089"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Long Zeng","raw_affiliation_strings":["Advanced Manufacturing Department, Tsinghua University, Shenzhen, China"],"affiliations":[{"raw_affiliation_string":"Advanced Manufacturing Department, Tsinghua University, Shenzhen, China","institution_ids":["https://openalex.org/I3131625388","https://openalex.org/I99065089"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":2,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":0.0,"has_fulltext":false,"cited_by_count":1,"citation_normalized_percentile":{"value":0.0,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":84,"max":92},"biblio":{"volume":"73","issue":null,"first_page":"1","last_page":"12"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T12111","display_name":"Industrial Vision Systems and Defect Detection","score":0.9999,"subfield":{"id":"https://openalex.org/subfields/2209","display_name":"Industrial and Manufacturing Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T12111","display_name":"Industrial Vision Systems and Defect Detection","score":0.9999,"subfield":{"id":"https://openalex.org/subfields/2209","display_name":"Industrial and Manufacturing Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T12122","display_name":"Physical Unclonable Functions (PUFs) and Hardware Security","score":0.9971,"subfield":{"id":"https://openalex.org/subfields/1708","display_name":"Hardware and Architecture"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10036","display_name":"Advanced Neural Network Applications","score":0.9966,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/overfitting","display_name":"Overfitting","score":0.8664886}],"concepts":[{"id":"https://openalex.org/C22019652","wikidata":"https://www.wikidata.org/wiki/Q331309","display_name":"Overfitting","level":3,"score":0.8664886},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.6781061},{"id":"https://openalex.org/C2776151529","wikidata":"https://www.wikidata.org/wiki/Q3045304","display_name":"Object detection","level":3,"score":0.6651287},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.6526218},{"id":"https://openalex.org/C94915269","wikidata":"https://www.wikidata.org/wiki/Q1834857","display_name":"Detector","level":2,"score":0.6506678},{"id":"https://openalex.org/C34146451","wikidata":"https://www.wikidata.org/wiki/Q5048094","display_name":"Cascade","level":2,"score":0.6266118},{"id":"https://openalex.org/C165005293","wikidata":"https://www.wikidata.org/wiki/Q1074500","display_name":"Chip","level":2,"score":0.5527443},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.53632426},{"id":"https://openalex.org/C95623464","wikidata":"https://www.wikidata.org/wiki/Q1096149","display_name":"Classifier (UML)","level":2,"score":0.5293465},{"id":"https://openalex.org/C52622490","wikidata":"https://www.wikidata.org/wiki/Q1026626","display_name":"Feature extraction","level":2,"score":0.48118192},{"id":"https://openalex.org/C50644808","wikidata":"https://www.wikidata.org/wiki/Q192776","display_name":"Artificial neural network","level":2,"score":0.25570577},{"id":"https://openalex.org/C127413603","wikidata":"https://www.wikidata.org/wiki/Q11023","display_name":"Engineering","level":0,"score":0.12845325},{"id":"https://openalex.org/C76155785","wikidata":"https://www.wikidata.org/wiki/Q418","display_name":"Telecommunications","level":1,"score":0.0},{"id":"https://openalex.org/C42360764","wikidata":"https://www.wikidata.org/wiki/Q83588","display_name":"Chemical engineering","level":1,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/tim.2024.3351238","pdf_url":null,"source":{"id":"https://openalex.org/S10892749","display_name":"IEEE Transactions on Instrumentation and Measurement","issn_l":"0018-9456","issn":["0018-9456","1557-9662"],"is_oa":false,"is_in_doaj":false,"is_core":true,"host_organization":"https://openalex.org/P4310319808","host_organization_name":"Institute of Electrical and Electronics Engineers","host_organization_lineage":["https://openalex.org/P4310319808"],"host_organization_lineage_names":["Institute of Electrical and Electronics Engineers"],"type":"journal"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[{"id":"https://metadata.un.org/sdg/9","display_name":"Industry, innovation and infrastructure","score":0.61}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":25,"referenced_works":["https://openalex.org/W2099244020","https://openalex.org/W2602633097","https://openalex.org/W2884585870","https://openalex.org/W2944303778","https://openalex.org/W2962974533","https://openalex.org/W2963351448","https://openalex.org/W2994615081","https://openalex.org/W2996733983","https://openalex.org/W3096609285","https://openalex.org/W3126753018","https://openalex.org/W3138516171","https://openalex.org/W3166225737","https://openalex.org/W3175978650","https://openalex.org/W3180675665","https://openalex.org/W3184439416","https://openalex.org/W4205763372","https://openalex.org/W4213436958","https://openalex.org/W4214753187","https://openalex.org/W4225672217","https://openalex.org/W4281645520","https://openalex.org/W4285109947","https://openalex.org/W4312933868","https://openalex.org/W4321433787","https://openalex.org/W4322724063","https://openalex.org/W4386076325"],"related_works":["https://openalex.org/W4378510483","https://openalex.org/W4376166922","https://openalex.org/W4362597605","https://openalex.org/W4297676672","https://openalex.org/W4281702477","https://openalex.org/W4221142204","https://openalex.org/W3009056573","https://openalex.org/W2922073769","https://openalex.org/W2490526372","https://openalex.org/W1574414179"],"abstract_inverted_index":{"High-speed":[0],"and":[1,20,58,123,147,188,197],"accurate":[2],"methods":[3],"for":[4,108],"chip-surface-defect":[5],"detection":[6,25,37,75,94,177],"remain":[7],"a":[8,17,31,84,105],"challenge":[9],"in":[10,144],"the":[11,49,55,61,73,92,139,145,160,173,176,183],"semiconductor":[12],"industry.":[13],"Therefore,":[14],"we":[15,98,131],"propose":[16,132],"Feature":[18,87],"Fusion":[19,88],"Data":[21],"Generation":[22],"based":[23],"Cascade":[24],"(FFDG-Cascade)":[26],"approach.":[27],"This":[28,112],"method":[29],"cascades":[30],"classification":[32],"module":[33],"with":[34,44],"an":[35],"object":[36,56,93],"module.":[38,95],"The":[39,202],"classifier":[40],"screens":[41],"non-defective":[42,117],"samples":[43,52],"high":[45],"confidence,":[46],"significantly":[47,158],"mitigating":[48],"number":[50],"of":[51,141],"forwarded":[53],"to":[54,64,77],"detector,":[57],"substantially":[59],"enhancing":[60],"efficiency":[62],"due":[63],"classifiers\u2019":[65],"higher":[66],"operational":[67],"speed":[68,178],"than":[69],"detectors.":[70],"We":[71],"enhance":[72],"model\u2019s":[74],"capability":[76],"detect":[78],"small":[79],"target":[80],"defects":[81],"by":[82,103,163,180,195],"incorporating":[83,169],"Shallow-to-Deep":[85],"Attentional":[86],"(SDAFF)":[89],"mechanism":[90],"into":[91,172],"In":[96],"addition,":[97],"alleviate":[99],"network":[100],"overfitting":[101],"issues":[102],"constructing":[104],"large":[106],"dataset":[107,113,203],"advanced":[109],"packaging":[110],"chips.":[111],"comprises":[114],"2270":[115],"real":[116,120],"samples,":[118,122,130],"1241":[119],"defective":[121,126],"7250":[124],"synthetic":[125,129,156],"samples.":[127],"For":[128],"two":[133],"defect":[134],"generation":[135],"algorithms,":[136],"each":[137],"satisfying":[138],"requirements":[140],"chip":[142],"production":[143],"early":[146],"subsequent":[148],"stages":[149],"respectively.":[150,201],"Evaluation":[151],"results":[152],"demonstrate":[153],"that":[154],"integrating":[155],"data":[157],"enhances":[159],"detector\u2019s":[161],"performance":[162],"7.49":[164],"mAP":[165],"on":[166,199],"average.":[167],"Upon":[168],"these":[170],"improvements":[171],"FFDG-Cascade":[174],"approach,":[175],"increases":[179],"61.77%,":[181],"while":[182],"false":[184,189],"acceptance":[185],"rate":[186,191],"(FAR)":[187],"rejection":[190],"(FRR)":[192],"are":[193],"reduced":[194],"80.67%":[196],"59.93%":[198],"average,":[200],"will":[204],"be":[205],"available":[206],"at":[207],"https://github.com/HiHiAllen/Chip-surface-defect-dataset.":[208]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4390939995","counts_by_year":[{"year":2024,"cited_by_count":1}],"updated_date":"2025-01-04T13:19:06.014625","created_date":"2024-01-18"}