{"id":"https://openalex.org/W4386495181","doi":"https://doi.org/10.1109/tim.2023.3312753","title":"TD-YOLOA: An Efficient YOLO Network With Attention Mechanism for Tire Defect Detection","display_name":"TD-YOLOA: An Efficient YOLO Network With Attention Mechanism for Tire Defect Detection","publication_year":2023,"publication_date":"2023-01-01","ids":{"openalex":"https://openalex.org/W4386495181","doi":"https://doi.org/10.1109/tim.2023.3312753"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/tim.2023.3312753","pdf_url":null,"source":{"id":"https://openalex.org/S10892749","display_name":"IEEE Transactions on Instrumentation and Measurement","issn_l":"0018-9456","issn":["0018-9456","1557-9662"],"is_oa":false,"is_in_doaj":false,"is_core":true,"host_organization":"https://openalex.org/P4310319808","host_organization_name":"Institute of Electrical and Electronics Engineers","host_organization_lineage":["https://openalex.org/P4310319808"],"host_organization_lineage_names":["Institute of Electrical and Electronics Engineers"],"type":"journal"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"journal-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5100338486","display_name":"Chen Peng","orcid":"https://orcid.org/0000-0003-3652-2233"},"institutions":[{"id":"https://openalex.org/I113940042","display_name":"Shanghai University","ror":"https://ror.org/006teas31","country_code":"CN","type":"education","lineage":["https://openalex.org/I113940042"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Chen Peng","raw_affiliation_strings":["Shanghai Key Laboratory of Power Station Automation Technology, and the Department of Automation, School of Mechatronic Engineering and Automation, Shanghai University, Shanghai, China"],"affiliations":[{"raw_affiliation_string":"Shanghai Key Laboratory of Power Station Automation Technology, and the Department of Automation, School of Mechatronic Engineering and Automation, Shanghai University, Shanghai, China","institution_ids":["https://openalex.org/I113940042"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5100449181","display_name":"Xiaoyu Li","orcid":"https://orcid.org/0000-0003-3879-1058"},"institutions":[{"id":"https://openalex.org/I113940042","display_name":"Shanghai University","ror":"https://ror.org/006teas31","country_code":"CN","type":"education","lineage":["https://openalex.org/I113940042"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Xiaoyu Li","raw_affiliation_strings":["Shanghai Key Laboratory of Power Station Automation Technology, and the Department of Automation, School of Mechatronic Engineering and Automation, Shanghai University, Shanghai, China"],"affiliations":[{"raw_affiliation_string":"Shanghai Key Laboratory of Power Station Automation Technology, and the Department of Automation, School of Mechatronic Engineering and Automation, Shanghai University, Shanghai, China","institution_ids":["https://openalex.org/I113940042"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5100449206","display_name":"Yu\u2010Long Wang","orcid":"https://orcid.org/0000-0002-6508-0051"},"institutions":[{"id":"https://openalex.org/I113940042","display_name":"Shanghai University","ror":"https://ror.org/006teas31","country_code":"CN","type":"education","lineage":["https://openalex.org/I113940042"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Yulong Wang","raw_affiliation_strings":["Shanghai Key Laboratory of Power Station Automation Technology, and the Department of Automation, School of Mechatronic Engineering and Automation, Shanghai University, Shanghai, China"],"affiliations":[{"raw_affiliation_string":"Shanghai Key Laboratory of Power Station Automation Technology, and the Department of Automation, School of Mechatronic Engineering and Automation, Shanghai University, Shanghai, China","institution_ids":["https://openalex.org/I113940042"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":1,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":4.211,"has_fulltext":false,"cited_by_count":9,"citation_normalized_percentile":{"value":0.696435,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":95,"max":96},"biblio":{"volume":"72","issue":null,"first_page":"1","last_page":"11"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T12111","display_name":"Industrial Vision Systems and Defect Detection","score":0.9996,"subfield":{"id":"https://openalex.org/subfields/2209","display_name":"Industrial and Manufacturing Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T12111","display_name":"Industrial Vision Systems and Defect Detection","score":0.9996,"subfield":{"id":"https://openalex.org/subfields/2209","display_name":"Industrial and Manufacturing Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10036","display_name":"Advanced Neural Network Applications","score":0.9996,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11606","display_name":"Infrastructure Maintenance and Monitoring","score":0.9895,"subfield":{"id":"https://openalex.org/subfields/2205","display_name":"Civil and Structural Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/merge","display_name":"Merge (version control)","score":0.49961567},{"id":"https://openalex.org/keywords/convolution","display_name":"Convolution (computer science)","score":0.4971793},{"id":"https://openalex.org/keywords/backbone-network","display_name":"Backbone network","score":0.47350696},{"id":"https://openalex.org/keywords/feature","display_name":"Feature (linguistics)","score":0.4497431},{"id":"https://openalex.org/keywords/pyramid","display_name":"Pyramid (geometry)","score":0.42198724}],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.65843874},{"id":"https://openalex.org/C52622490","wikidata":"https://www.wikidata.org/wiki/Q1026626","display_name":"Feature extraction","level":2,"score":0.6187287},{"id":"https://openalex.org/C2777210771","wikidata":"https://www.wikidata.org/wiki/Q4927124","display_name":"Block (permutation group theory)","level":2,"score":0.58076423},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.524725},{"id":"https://openalex.org/C197129107","wikidata":"https://www.wikidata.org/wiki/Q1921621","display_name":"Merge (version control)","level":2,"score":0.49961567},{"id":"https://openalex.org/C45347329","wikidata":"https://www.wikidata.org/wiki/Q5166604","display_name":"Convolution (computer science)","level":3,"score":0.4971793},{"id":"https://openalex.org/C81363708","wikidata":"https://www.wikidata.org/wiki/Q17084460","display_name":"Convolutional neural network","level":2,"score":0.4927645},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.4843746},{"id":"https://openalex.org/C88796919","wikidata":"https://www.wikidata.org/wiki/Q1142907","display_name":"Backbone network","level":2,"score":0.47350696},{"id":"https://openalex.org/C2776151529","wikidata":"https://www.wikidata.org/wiki/Q3045304","display_name":"Object detection","level":3,"score":0.45071328},{"id":"https://openalex.org/C2776401178","wikidata":"https://www.wikidata.org/wiki/Q12050496","display_name":"Feature (linguistics)","level":2,"score":0.4497431},{"id":"https://openalex.org/C142575187","wikidata":"https://www.wikidata.org/wiki/Q3358290","display_name":"Pyramid (geometry)","level":2,"score":0.42198724},{"id":"https://openalex.org/C124101348","wikidata":"https://www.wikidata.org/wiki/Q172491","display_name":"Data mining","level":1,"score":0.34015697},{"id":"https://openalex.org/C31972630","wikidata":"https://www.wikidata.org/wiki/Q844240","display_name":"Computer vision","level":1,"score":0.33630723},{"id":"https://openalex.org/C79403827","wikidata":"https://www.wikidata.org/wiki/Q3988","display_name":"Real-time computing","level":1,"score":0.33378416},{"id":"https://openalex.org/C50644808","wikidata":"https://www.wikidata.org/wiki/Q192776","display_name":"Artificial neural network","level":2,"score":0.25106484},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.08642715},{"id":"https://openalex.org/C31258907","wikidata":"https://www.wikidata.org/wiki/Q1301371","display_name":"Computer network","level":1,"score":0.0},{"id":"https://openalex.org/C41895202","wikidata":"https://www.wikidata.org/wiki/Q8162","display_name":"Linguistics","level":1,"score":0.0},{"id":"https://openalex.org/C138885662","wikidata":"https://www.wikidata.org/wiki/Q5891","display_name":"Philosophy","level":0,"score":0.0},{"id":"https://openalex.org/C2524010","wikidata":"https://www.wikidata.org/wiki/Q8087","display_name":"Geometry","level":1,"score":0.0},{"id":"https://openalex.org/C23123220","wikidata":"https://www.wikidata.org/wiki/Q816826","display_name":"Information retrieval","level":1,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/tim.2023.3312753","pdf_url":null,"source":{"id":"https://openalex.org/S10892749","display_name":"IEEE Transactions on Instrumentation and Measurement","issn_l":"0018-9456","issn":["0018-9456","1557-9662"],"is_oa":false,"is_in_doaj":false,"is_core":true,"host_organization":"https://openalex.org/P4310319808","host_organization_name":"Institute of Electrical and Electronics Engineers","host_organization_lineage":["https://openalex.org/P4310319808"],"host_organization_lineage_names":["Institute of Electrical and Electronics Engineers"],"type":"journal"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[],"grants":[{"funder":"https://openalex.org/F4320321001","funder_display_name":"National Natural Science Foundation of China","award_id":"62173218"},{"funder":"https://openalex.org/F4320321001","funder_display_name":"National Natural Science Foundation of China","award_id":"61833011"},{"funder":"https://openalex.org/F4320327912","funder_display_name":"Higher Education Discipline Innovation Project","award_id":"D18003"}],"datasets":[],"versions":[],"referenced_works_count":40,"referenced_works":["https://openalex.org/W2085709773","https://openalex.org/W2109255472","https://openalex.org/W2144506857","https://openalex.org/W2154343291","https://openalex.org/W2300147725","https://openalex.org/W2504335775","https://openalex.org/W2549139847","https://openalex.org/W2741224071","https://openalex.org/W2886037842","https://openalex.org/W2944303778","https://openalex.org/W2963263347","https://openalex.org/W3002304552","https://openalex.org/W3015821169","https://openalex.org/W3033901474","https://openalex.org/W3115984564","https://openalex.org/W3124186538","https://openalex.org/W3142772534","https://openalex.org/W3153249728","https://openalex.org/W3159196909","https://openalex.org/W3180134609","https://openalex.org/W3182843231","https://openalex.org/W3184439416","https://openalex.org/W3204895347","https://openalex.org/W3206555527","https://openalex.org/W4210598935","https://openalex.org/W4224281994","https://openalex.org/W4225672217","https://openalex.org/W4226437492","https://openalex.org/W4290775139","https://openalex.org/W4293584584","https://openalex.org/W4312345880","https://openalex.org/W4312363311","https://openalex.org/W4312755049","https://openalex.org/W4312974542","https://openalex.org/W4319996156","https://openalex.org/W4319999503","https://openalex.org/W4321016515","https://openalex.org/W4386076325","https://openalex.org/W4388720611","https://openalex.org/W639708223"],"related_works":["https://openalex.org/W4386303287","https://openalex.org/W4385450646","https://openalex.org/W4323356875","https://openalex.org/W4320802741","https://openalex.org/W4255402425","https://openalex.org/W3148519004","https://openalex.org/W3080115630","https://openalex.org/W2913302899","https://openalex.org/W2546942002","https://openalex.org/W2295021132"],"abstract_inverted_index":{"Tire":[0],"quality":[1],"is":[2,11,21,65,94,109,131,144,152,168,219],"crucial":[3],"for":[4,46,103,146,214],"vehicle":[5],"safety,":[6],"and":[7,39,53,79,116,150,160,182,211,221],"thus":[8],"delivery":[9],"inspection":[10],"necessary.":[12],"However,":[13],"detecting":[14],"internal":[15],"tire":[16,62,177,191,216],"defects":[17,193],"from":[18,157],"X-ray":[19],"images":[20],"still":[22],"a":[23,60,121,162,190,208,215],"challenging":[24],"task":[25],"due":[26],"to":[27,49,67,96,111,133,154,170],"its":[28],"complex":[29],"texture":[30],"background,":[31],"diverse":[32],"types":[33],"of":[34,75,100,137,175,199,232],"defects,":[35,178],"small":[36,176],"defect":[37],"areas":[38],"so":[40],"on,":[41],"which":[42,179,218],"make":[43],"it":[44],"difficult":[45],"existing":[47],"methods":[48],"achieve":[50],"high":[51],"accuracy":[52,174],"real-time":[54],"performance":[55],"simultaneously.":[56],"In":[57,83],"this":[58],"article,":[59],"novel":[61],"detection":[63,102,173],"approach":[64],"proposed":[66,95,201,233],"address":[68],"these":[69],"problems":[70],"by":[71],"integrating":[72],"the":[73,98,113,135,141,172,186,197,200,225,230],"advantages":[74],"improved":[76],"yolo":[77],"network":[78,90],"attention":[80,165],"mechanism":[81],"(TD-YOLOA).":[82],"particular,":[84],"i)":[85],"an":[86],"efficient":[87],"layer":[88],"aggregation":[89],"(ELAN)":[91],"backbone":[92],"structure":[93],"improve":[97,134,171],"ability":[99],"model":[101],"feature":[104,138],"extraction,":[105],"where":[106,140],"grouped":[107],"convolution":[108,129],"applied":[110],"enhance":[112],"information":[114],"interaction":[115],"reduce":[117],"computational":[118],"complexity;":[119],"ii)":[120],"spatial":[122,183],"pyramid":[123],"pooling":[124],"with":[125],"cross":[126],"stage":[127],"partial":[128],"(SPPCSPC)":[130],"adopted":[132],"efficiency":[136],"fusion,":[139],"SPP":[142],"module":[143,166],"retained":[145],"enlarging":[147],"receptive":[148],"field":[149],"CSPC":[151],"designed":[153],"merge":[155],"features":[156],"different":[158],"operations;":[159],"iii)":[161],"convolutional":[163],"block":[164],"(CBAM)":[167],"introduced":[169],"combines":[180],"channel":[181],"attention.":[184],"Finally,":[185],"experimental":[187],"results":[188],"on":[189],"common":[192],"dataset":[194],"have":[195],"demonstrated":[196],"superiority":[198],"TD-YOLOA":[202],"method":[203],"over":[204],"other":[205],"methods,":[206],"achieving":[207],"91.3%":[209],"mAP":[210],"9.28":[212],"ms":[213],"sub-image,":[217],"0.5%":[220],"0.65ms":[222],"better.":[223],"And":[224],"actual":[226],"industrial":[227],"application":[228],"verifies":[229],"effectiveness":[231],"method.":[234]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4386495181","counts_by_year":[{"year":2024,"cited_by_count":7}],"updated_date":"2024-12-19T15:19:18.191406","created_date":"2023-09-07"}