{"id":"https://openalex.org/W4377001522","doi":"https://doi.org/10.1109/tim.2023.3276509","title":"Hybrid EEG-fNIRS Brain Computer Interface Based on Common Spatial Pattern by Using EEG-Informed General Linear Model","display_name":"Hybrid EEG-fNIRS Brain Computer Interface Based on Common Spatial Pattern by Using EEG-Informed General Linear Model","publication_year":2023,"publication_date":"2023-01-01","ids":{"openalex":"https://openalex.org/W4377001522","doi":"https://doi.org/10.1109/tim.2023.3276509"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/tim.2023.3276509","pdf_url":null,"source":{"id":"https://openalex.org/S10892749","display_name":"IEEE Transactions on Instrumentation and Measurement","issn_l":"0018-9456","issn":["0018-9456","1557-9662"],"is_oa":false,"is_in_doaj":false,"is_core":true,"host_organization":"https://openalex.org/P4310319808","host_organization_name":"Institute of Electrical and Electronics Engineers","host_organization_lineage":["https://openalex.org/P4310319808"],"host_organization_lineage_names":["Institute of Electrical and Electronics Engineers"],"type":"journal"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"journal-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5037162506","display_name":"Yunyuan Gao","orcid":"https://orcid.org/0000-0003-2128-2185"},"institutions":[{"id":"https://openalex.org/I50760025","display_name":"Hangzhou Dianzi University","ror":"https://ror.org/0576gt767","country_code":"CN","type":"education","lineage":["https://openalex.org/I50760025"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Yunyuan Gao","raw_affiliation_strings":["College of Automation, Hangzhou Dianzi University, Hangzhou, China"],"affiliations":[{"raw_affiliation_string":"College of Automation, Hangzhou Dianzi University, Hangzhou, China","institution_ids":["https://openalex.org/I50760025"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5102781418","display_name":"Biao Jia","orcid":"https://orcid.org/0000-0002-3433-7387"},"institutions":[{"id":"https://openalex.org/I50760025","display_name":"Hangzhou Dianzi University","ror":"https://ror.org/0576gt767","country_code":"CN","type":"education","lineage":["https://openalex.org/I50760025"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Biao Jia","raw_affiliation_strings":["College of Automation, Hangzhou Dianzi University, Hangzhou, China"],"affiliations":[{"raw_affiliation_string":"College of Automation, Hangzhou Dianzi University, Hangzhou, China","institution_ids":["https://openalex.org/I50760025"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5088912607","display_name":"Michael Houston","orcid":"https://orcid.org/0000-0002-1951-084X"},"institutions":[{"id":"https://openalex.org/I44461941","display_name":"University of Houston","ror":"https://ror.org/048sx0r50","country_code":"US","type":"education","lineage":["https://openalex.org/I44461941"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Michael Houston","raw_affiliation_strings":["Department of Biomedical Engineering, University of Houston, Houston, TX, USA"],"affiliations":[{"raw_affiliation_string":"Department of Biomedical Engineering, University of Houston, Houston, TX, USA","institution_ids":["https://openalex.org/I44461941"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5100761349","display_name":"Yingchun Zhang","orcid":"https://orcid.org/0000-0002-1927-4103"},"institutions":[{"id":"https://openalex.org/I44461941","display_name":"University of Houston","ror":"https://ror.org/048sx0r50","country_code":"US","type":"education","lineage":["https://openalex.org/I44461941"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Yingchun Zhang","raw_affiliation_strings":["Department of Biomedical Engineering, University of Houston, Houston, TX, USA"],"affiliations":[{"raw_affiliation_string":"Department of Biomedical Engineering, University of Houston, Houston, TX, USA","institution_ids":["https://openalex.org/I44461941"]}]}],"institution_assertions":[],"countries_distinct_count":2,"institutions_distinct_count":2,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":4.482,"has_fulltext":false,"cited_by_count":12,"citation_normalized_percentile":{"value":0.999929,"is_in_top_1_percent":true,"is_in_top_10_percent":true},"cited_by_percentile_year":{"min":96,"max":97},"biblio":{"volume":"72","issue":null,"first_page":"1","last_page":"10"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10429","display_name":"EEG and Brain-Computer Interfaces","score":0.9999,"subfield":{"id":"https://openalex.org/subfields/2805","display_name":"Cognitive Neuroscience"},"field":{"id":"https://openalex.org/fields/28","display_name":"Neuroscience"},"domain":{"id":"https://openalex.org/domains/1","display_name":"Life Sciences"}},"topics":[{"id":"https://openalex.org/T10429","display_name":"EEG and Brain-Computer Interfaces","score":0.9999,"subfield":{"id":"https://openalex.org/subfields/2805","display_name":"Cognitive Neuroscience"},"field":{"id":"https://openalex.org/fields/28","display_name":"Neuroscience"},"domain":{"id":"https://openalex.org/domains/1","display_name":"Life Sciences"}},{"id":"https://openalex.org/T10977","display_name":"Optical Imaging and Spectroscopy Techniques","score":0.9983,"subfield":{"id":"https://openalex.org/subfields/2741","display_name":"Radiology, Nuclear Medicine and Imaging"},"field":{"id":"https://openalex.org/fields/27","display_name":"Medicine"},"domain":{"id":"https://openalex.org/domains/4","display_name":"Health Sciences"}},{"id":"https://openalex.org/T11196","display_name":"Non-Invasive Vital Sign Monitoring","score":0.9961,"subfield":{"id":"https://openalex.org/subfields/2204","display_name":"Biomedical Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/motor-imagery","display_name":"Motor Imagery","score":0.48391706},{"id":"https://openalex.org/keywords/overfitting","display_name":"Overfitting","score":0.471411},{"id":"https://openalex.org/keywords/functional-near-infrared-spectroscopy","display_name":"Functional near-infrared spectroscopy","score":0.46097177}],"concepts":[{"id":"https://openalex.org/C173201364","wikidata":"https://www.wikidata.org/wiki/Q897410","display_name":"Brain\u2013computer interface","level":3,"score":0.8049993},{"id":"https://openalex.org/C522805319","wikidata":"https://www.wikidata.org/wiki/Q179965","display_name":"Electroencephalography","level":2,"score":0.71757054},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.71297586},{"id":"https://openalex.org/C12267149","wikidata":"https://www.wikidata.org/wiki/Q282453","display_name":"Support vector machine","level":2,"score":0.6452714},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.64519083},{"id":"https://openalex.org/C52622490","wikidata":"https://www.wikidata.org/wiki/Q1026626","display_name":"Feature extraction","level":2,"score":0.63487476},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.5923007},{"id":"https://openalex.org/C54808283","wikidata":"https://www.wikidata.org/wiki/Q6918191","display_name":"Motor imagery","level":4,"score":0.48391706},{"id":"https://openalex.org/C22019652","wikidata":"https://www.wikidata.org/wiki/Q331309","display_name":"Overfitting","level":3,"score":0.471411},{"id":"https://openalex.org/C130796691","wikidata":"https://www.wikidata.org/wiki/Q750537","display_name":"Functional near-infrared spectroscopy","level":4,"score":0.46097177},{"id":"https://openalex.org/C28490314","wikidata":"https://www.wikidata.org/wiki/Q189436","display_name":"Speech recognition","level":1,"score":0.3533807},{"id":"https://openalex.org/C50644808","wikidata":"https://www.wikidata.org/wiki/Q192776","display_name":"Artificial neural network","level":2,"score":0.25955486},{"id":"https://openalex.org/C169900460","wikidata":"https://www.wikidata.org/wiki/Q2200417","display_name":"Cognition","level":2,"score":0.10304758},{"id":"https://openalex.org/C15744967","wikidata":"https://www.wikidata.org/wiki/Q9418","display_name":"Psychology","level":0,"score":0.0},{"id":"https://openalex.org/C118552586","wikidata":"https://www.wikidata.org/wiki/Q7867","display_name":"Psychiatry","level":1,"score":0.0},{"id":"https://openalex.org/C169760540","wikidata":"https://www.wikidata.org/wiki/Q207011","display_name":"Neuroscience","level":1,"score":0.0},{"id":"https://openalex.org/C86803240","wikidata":"https://www.wikidata.org/wiki/Q420","display_name":"Biology","level":0,"score":0.0},{"id":"https://openalex.org/C2781195155","wikidata":"https://www.wikidata.org/wiki/Q18680","display_name":"Prefrontal cortex","level":3,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/tim.2023.3276509","pdf_url":null,"source":{"id":"https://openalex.org/S10892749","display_name":"IEEE Transactions on Instrumentation and Measurement","issn_l":"0018-9456","issn":["0018-9456","1557-9662"],"is_oa":false,"is_in_doaj":false,"is_core":true,"host_organization":"https://openalex.org/P4310319808","host_organization_name":"Institute of Electrical and Electronics Engineers","host_organization_lineage":["https://openalex.org/P4310319808"],"host_organization_lineage_names":["Institute of Electrical and Electronics Engineers"],"type":"journal"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[{"id":"https://metadata.un.org/sdg/1","display_name":"No poverty","score":0.46}],"grants":[{"funder":"https://openalex.org/F4320321001","funder_display_name":"National Natural Science Foundation of China","award_id":"61971168"},{"funder":"https://openalex.org/F4320321001","funder_display_name":"National Natural Science Foundation of China","award_id":"62071161"},{"funder":"https://openalex.org/F4320321001","funder_display_name":"National Natural Science Foundation of China","award_id":"62271181"},{"funder":"https://openalex.org/F4320338464","funder_display_name":"Natural Science Foundation of Zhejiang Province","award_id":"LZ22F010003"}],"datasets":[],"versions":[],"referenced_works_count":52,"referenced_works":["https://openalex.org/W1147354400","https://openalex.org/W1938483826","https://openalex.org/W1975590803","https://openalex.org/W1978866722","https://openalex.org/W1987143349","https://openalex.org/W2012966115","https://openalex.org/W2038120455","https://openalex.org/W2045561515","https://openalex.org/W2047401359","https://openalex.org/W2076456816","https://openalex.org/W2089589969","https://openalex.org/W2092890379","https://openalex.org/W2106006415","https://openalex.org/W2150275893","https://openalex.org/W2153635508","https://openalex.org/W2164497299","https://openalex.org/W2231596722","https://openalex.org/W2256369587","https://openalex.org/W2293517516","https://openalex.org/W2537163668","https://openalex.org/W2552578398","https://openalex.org/W2584504851","https://openalex.org/W2630361035","https://openalex.org/W2739160562","https://openalex.org/W2754014436","https://openalex.org/W2755510477","https://openalex.org/W2792264530","https://openalex.org/W2795006844","https://openalex.org/W2798673040","https://openalex.org/W2808098316","https://openalex.org/W2811153207","https://openalex.org/W2883269930","https://openalex.org/W2892217709","https://openalex.org/W2898834073","https://openalex.org/W2911911042","https://openalex.org/W2914534442","https://openalex.org/W2953384096","https://openalex.org/W2955286582","https://openalex.org/W2976911668","https://openalex.org/W2990928020","https://openalex.org/W3004612918","https://openalex.org/W3005413226","https://openalex.org/W3020649347","https://openalex.org/W3024404325","https://openalex.org/W3031551469","https://openalex.org/W3080395176","https://openalex.org/W3123892995","https://openalex.org/W3148140065","https://openalex.org/W3173667891","https://openalex.org/W3199005913","https://openalex.org/W4210767730","https://openalex.org/W4210839512"],"related_works":["https://openalex.org/W3045772920","https://openalex.org/W2951110009","https://openalex.org/W2947925238","https://openalex.org/W2887556756","https://openalex.org/W2510077457","https://openalex.org/W1984377984","https://openalex.org/W1977940006","https://openalex.org/W1961545574","https://openalex.org/W195417223","https://openalex.org/W1513407214"],"abstract_inverted_index":{"Hybrid":[0],"brain":[1],"computer":[2],"interfaces":[3],"(BCI)":[4],"utilizing":[5],"the":[6,14,30,34,50,65,87,97,111,115,121,126,136,146,179,196,206,222,231],"high":[7,15],"temporal":[8],"resolution":[9,17],"of":[10,18,33,49,103,130,182,208,211,225,234],"electroencephalography":[11],"(EEG)":[12],"and":[13,96,135,174,178],"spatial":[16,99],"near-infrared":[19],"spectroscopy":[20],"(fNIRS)":[21],"are":[22,108],"preferred":[23],"over":[24],"single-modal":[25],"BCIs.":[26],"However,":[27],"due":[28],"to":[29,46,144],"large":[31],"dimensionality":[32],"multi-class":[35],"statistical":[36],"features":[37,102,117,123,185],"commonly":[38],"used":[39,143],"in":[40,75,238],"fNIRS":[41,62,67,89,112,116,167,202,214,226],"signals,":[42,227],"it":[43],"is":[44,73,83,142,216],"easy":[45],"cause":[47],"overfitting":[48],"EEG-fNIRS":[51,184,236],"hybrid":[52,133,149,235],"BCI":[53,237],"classifier.":[54],"Therefore,":[55],"a":[56,79,92,157],"low-dimensional":[57],"feature":[58,203],"extraction":[59,204],"method":[60,141,153],"for":[61],"based":[63],"on":[64,156,213],"EEG-informed":[66,88],"general":[68],"linear":[69],"model":[70],"(GLM)":[71],"analysis":[72],"proposed":[74,152],"this":[76,104,201],"paper.":[77],"First,":[78],"regression":[80,105],"coefficient":[81,106],"matrix":[82,107],"obtained":[84],"by":[85],"using":[86,166,195,200],"GLM":[90],"with":[91,120,148],"time":[93],"window":[94],"added,":[95],"common":[98],"pattern":[100],"(CSP)":[101],"extracted":[109,124],"as":[110,132],"features.":[113,150],"Lastly,":[114],"were":[118],"combined":[119],"CSP":[122,212],"from":[125],"optimal":[127],"narrow":[128],"band":[129],"EEG":[131],"features,":[134],"support":[137],"vector":[138],"machine":[139],"(SVM)":[140],"classify":[145],"samples":[147],"The":[151,163],"was":[154,189],"tested":[155],"publicly":[158],"available":[159],"motor":[160,239],"imagery":[161,240],"dataset.":[162,198],"classification":[164,180,232],"accuracy":[165,181,233],"signals":[168,215],"alone":[169],"reached":[170,186],"68.79%":[171],"(oxygenated":[172],"hemoglobin)":[173],"68.62%":[175],"(deoxygenated":[176],"hemoglobin),":[177],"combining":[183],"79.48%,":[187],"which":[188,218],"higher":[190],"than":[191],"other":[192],"existing":[193],"methods":[194,224],"same":[197],"By":[199],"method,":[205],"problem":[207],"poor":[209],"performance":[210],"solved,":[217],"not":[219],"only":[220],"enriches":[221],"processing":[223],"but":[228],"also":[229],"improves":[230],"tasks.":[241]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4377001522","counts_by_year":[{"year":2024,"cited_by_count":7},{"year":2023,"cited_by_count":3}],"updated_date":"2024-12-15T18:30:51.858505","created_date":"2023-05-19"}