{"id":"https://openalex.org/W4312396856","doi":"https://doi.org/10.1109/tim.2022.3212040","title":"SzHNN: A Novel and Scalable Deep Convolution Hybrid Neural Network Framework for Schizophrenia Detection Using Multichannel EEG","display_name":"SzHNN: A Novel and Scalable Deep Convolution Hybrid Neural Network Framework for Schizophrenia Detection Using Multichannel EEG","publication_year":2022,"publication_date":"2022-01-01","ids":{"openalex":"https://openalex.org/W4312396856","doi":"https://doi.org/10.1109/tim.2022.3212040"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/tim.2022.3212040","pdf_url":null,"source":{"id":"https://openalex.org/S10892749","display_name":"IEEE Transactions on Instrumentation and Measurement","issn_l":"0018-9456","issn":["0018-9456","1557-9662"],"is_oa":false,"is_in_doaj":false,"is_core":true,"host_organization":"https://openalex.org/P4310319808","host_organization_name":"Institute of Electrical and Electronics Engineers","host_organization_lineage":["https://openalex.org/P4310319808"],"host_organization_lineage_names":["Institute of Electrical and Electronics Engineers"],"type":"journal"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"journal-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5045848573","display_name":"Geetanjali Sharma","orcid":"https://orcid.org/0000-0002-8906-7820"},"institutions":[{"id":"https://openalex.org/I83205935","display_name":"Malaviya National Institute of Technology Jaipur","ror":"https://ror.org/0077k1j32","country_code":"IN","type":"education","lineage":["https://openalex.org/I83205935"]}],"countries":["IN"],"is_corresponding":false,"raw_author_name":"Geetanjali Sharma","raw_affiliation_strings":["Department of Electronics and Communication Engineering, Maharaja Surajmal Institute of Technology, New Delhi, India","Department of Electronics and Communication Engineering, Malaviya National Institute of Technology, Jaipur, Rajasthan, India"],"affiliations":[{"raw_affiliation_string":"Department of Electronics and Communication Engineering, Malaviya National Institute of Technology, Jaipur, Rajasthan, India","institution_ids":["https://openalex.org/I83205935"]},{"raw_affiliation_string":"Department of Electronics and Communication Engineering, Maharaja Surajmal Institute of Technology, New Delhi, India","institution_ids":[]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5005876655","display_name":"Amit M. Joshi","orcid":"https://orcid.org/0000-0001-7919-1652"},"institutions":[{"id":"https://openalex.org/I83205935","display_name":"Malaviya National Institute of Technology Jaipur","ror":"https://ror.org/0077k1j32","country_code":"IN","type":"education","lineage":["https://openalex.org/I83205935"]}],"countries":["IN"],"is_corresponding":false,"raw_author_name":"Amit M. Joshi","raw_affiliation_strings":["Department of Electronics and Communication Engineering, Malaviya National Institute of Technology, Jaipur, Rajasthan, India"],"affiliations":[{"raw_affiliation_string":"Department of Electronics and Communication Engineering, Malaviya National Institute of Technology, Jaipur, Rajasthan, India","institution_ids":["https://openalex.org/I83205935"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":1,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":2.822,"has_fulltext":false,"cited_by_count":17,"citation_normalized_percentile":{"value":0.999924,"is_in_top_1_percent":true,"is_in_top_10_percent":true},"cited_by_percentile_year":{"min":95,"max":96},"biblio":{"volume":"71","issue":null,"first_page":"1","last_page":"9"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10429","display_name":"EEG and Brain-Computer Interfaces","score":0.9999,"subfield":{"id":"https://openalex.org/subfields/2805","display_name":"Cognitive Neuroscience"},"field":{"id":"https://openalex.org/fields/28","display_name":"Neuroscience"},"domain":{"id":"https://openalex.org/domains/1","display_name":"Life Sciences"}},"topics":[{"id":"https://openalex.org/T10429","display_name":"EEG and Brain-Computer Interfaces","score":0.9999,"subfield":{"id":"https://openalex.org/subfields/2805","display_name":"Cognitive Neuroscience"},"field":{"id":"https://openalex.org/fields/28","display_name":"Neuroscience"},"domain":{"id":"https://openalex.org/domains/1","display_name":"Life Sciences"}},{"id":"https://openalex.org/T11021","display_name":"ECG Monitoring and Analysis","score":0.9866,"subfield":{"id":"https://openalex.org/subfields/2705","display_name":"Cardiology and Cardiovascular Medicine"},"field":{"id":"https://openalex.org/fields/27","display_name":"Medicine"},"domain":{"id":"https://openalex.org/domains/4","display_name":"Health Sciences"}},{"id":"https://openalex.org/T10241","display_name":"Functional Brain Connectivity Studies","score":0.9619,"subfield":{"id":"https://openalex.org/subfields/2805","display_name":"Cognitive Neuroscience"},"field":{"id":"https://openalex.org/fields/28","display_name":"Neuroscience"},"domain":{"id":"https://openalex.org/domains/1","display_name":"Life Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/feature","display_name":"Feature (linguistics)","score":0.4638064}],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.76469964},{"id":"https://openalex.org/C108583219","wikidata":"https://www.wikidata.org/wiki/Q197536","display_name":"Deep learning","level":2,"score":0.736591},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.7363056},{"id":"https://openalex.org/C81363708","wikidata":"https://www.wikidata.org/wiki/Q17084460","display_name":"Convolutional neural network","level":2,"score":0.70795137},{"id":"https://openalex.org/C522805319","wikidata":"https://www.wikidata.org/wiki/Q179965","display_name":"Electroencephalography","level":2,"score":0.5735144},{"id":"https://openalex.org/C52622490","wikidata":"https://www.wikidata.org/wiki/Q1026626","display_name":"Feature extraction","level":2,"score":0.5597378},{"id":"https://openalex.org/C50644808","wikidata":"https://www.wikidata.org/wiki/Q192776","display_name":"Artificial neural network","level":2,"score":0.5169608},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.5028321},{"id":"https://openalex.org/C48044578","wikidata":"https://www.wikidata.org/wiki/Q727490","display_name":"Scalability","level":2,"score":0.5021455},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.48753402},{"id":"https://openalex.org/C2776401178","wikidata":"https://www.wikidata.org/wiki/Q12050496","display_name":"Feature (linguistics)","level":2,"score":0.4638064},{"id":"https://openalex.org/C2776412080","wikidata":"https://www.wikidata.org/wiki/Q7431605","display_name":"Schizophrenia (object-oriented programming)","level":2,"score":0.43773407},{"id":"https://openalex.org/C15744967","wikidata":"https://www.wikidata.org/wiki/Q9418","display_name":"Psychology","level":0,"score":0.0},{"id":"https://openalex.org/C77088390","wikidata":"https://www.wikidata.org/wiki/Q8513","display_name":"Database","level":1,"score":0.0},{"id":"https://openalex.org/C199360897","wikidata":"https://www.wikidata.org/wiki/Q9143","display_name":"Programming language","level":1,"score":0.0},{"id":"https://openalex.org/C41895202","wikidata":"https://www.wikidata.org/wiki/Q8162","display_name":"Linguistics","level":1,"score":0.0},{"id":"https://openalex.org/C138885662","wikidata":"https://www.wikidata.org/wiki/Q5891","display_name":"Philosophy","level":0,"score":0.0},{"id":"https://openalex.org/C118552586","wikidata":"https://www.wikidata.org/wiki/Q7867","display_name":"Psychiatry","level":1,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/tim.2022.3212040","pdf_url":null,"source":{"id":"https://openalex.org/S10892749","display_name":"IEEE Transactions on Instrumentation and Measurement","issn_l":"0018-9456","issn":["0018-9456","1557-9662"],"is_oa":false,"is_in_doaj":false,"is_core":true,"host_organization":"https://openalex.org/P4310319808","host_organization_name":"Institute of Electrical and Electronics Engineers","host_organization_lineage":["https://openalex.org/P4310319808"],"host_organization_lineage_names":["Institute of Electrical and Electronics Engineers"],"type":"journal"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":31,"referenced_works":["https://openalex.org/W141433200","https://openalex.org/W1509285273","https://openalex.org/W2004301758","https://openalex.org/W2059624060","https://openalex.org/W2064675550","https://openalex.org/W2104886463","https://openalex.org/W2289075896","https://openalex.org/W2343617890","https://openalex.org/W2526511911","https://openalex.org/W2775399334","https://openalex.org/W2805710794","https://openalex.org/W2890510501","https://openalex.org/W2962865354","https://openalex.org/W2963568316","https://openalex.org/W2972669947","https://openalex.org/W2983719041","https://openalex.org/W3044636944","https://openalex.org/W3049720426","https://openalex.org/W3084493059","https://openalex.org/W3096705966","https://openalex.org/W3099165740","https://openalex.org/W3120897863","https://openalex.org/W3121117531","https://openalex.org/W3126085817","https://openalex.org/W3129758652","https://openalex.org/W3145713205","https://openalex.org/W3187023453","https://openalex.org/W3193424383","https://openalex.org/W3215950319","https://openalex.org/W4225685342","https://openalex.org/W4287510307"],"related_works":["https://openalex.org/W4312960290","https://openalex.org/W4308951944","https://openalex.org/W4293226380","https://openalex.org/W2922348724","https://openalex.org/W2389214306","https://openalex.org/W2130428257","https://openalex.org/W2057366091","https://openalex.org/W2049513647","https://openalex.org/W2032664813","https://openalex.org/W200322357"],"abstract_inverted_index":{"In":[0,125],"the":[1,23,47,71,113,128,141,171,200,205,211,217,238],"field":[2],"of":[3,28,46,73,99,154,161,197,221,231,240,249,272],"neuroscience,":[4],"brain":[5,18,64],"activity":[6],"measurement":[7],"and":[8,26,34,43,104,119,137,157,178,194,228,244,253,274,279],"analysis":[9],"are":[10],"considered":[11],"crucial":[12],"areas.":[13],"Schizophrenia":[14],"(Sz)":[15],"is":[16,38,51,96,123,167,208,263],"a":[17,78,97,246],"disorder":[19],"that":[20,210],"severely":[21],"affects":[22],"thinking,":[24],"behavior,":[25],"feelings":[27],"people":[29],"worldwide.":[30],"Thus,":[31],"an":[32,55,270],"accurate":[33],"rapid":[35],"detection":[36,60,76],"method":[37],"needed":[39],"for":[40,115,121,175,266,276],"proper":[41],"care":[42],"quality":[44],"treatment":[45],"patients.":[48],"Electroencephalography":[49],"(EEG)":[50],"proved":[52],"to":[53,69,224],"be":[54],"efficient":[56],"biomarker":[57],"in":[58,81],"Sz":[59,75],"as":[61,89],"it":[62,207],"records":[63],"activities.":[65],"This":[66],"article":[67],"aims":[68],"improve":[70],"performance":[72],"EEG-based":[74],"using":[77,186],"deep-learning":[79,86,136],"approach":[80],"remote":[82],"applications.":[83,180],"A":[84],"hybrid":[85,91,213],"model":[87,130,166,214,236],"identified":[88],"schizophrenia":[90],"neural":[92,101],"network":[93],"(SzHNN),":[94],"which":[95,268],"combination":[98],"convolutional":[100],"networks":[102],"(CNNs)":[103],"long":[105],"short-term":[106],"memory":[107],"(LSTM),":[108],"has":[109,131],"been":[110,132,144,184],"proposed":[111,129,165,212,235],"wherein":[112,150],"CNN":[114],"local":[116],"feature":[117],"extraction":[118],"LSTM":[120],"classification":[122,219],"utilized.":[124],"this":[126],"article,":[127],"compared":[133,223],"with":[134,170,257],"several":[135],"machine-learning-based":[138],"models.":[139],"All":[140],"models":[142,227,230],"have":[143,183],"evaluated":[145],"on":[146,190,199,203],"two":[147],"different":[148,191,195,241],"datasets":[149,277],"dataset":[151,158],"1":[152,278],"consists":[153,160],"19":[155],"subjects":[156],"2":[159],"16":[162],"subjects.":[163],"The":[164,234],"also":[168,264],"implemented":[169,226],"Internet-of-Medical-Things":[172],"(IoMT)":[173],"framework":[174],"smart":[176],"healthcare":[177],"remote-based":[179],"Several":[181],"experiments":[182],"conducted":[185],"various":[187],"parametric":[188],"settings":[189],"frequency":[192,242],"bands":[193,243],"sets":[196],"electrodes":[198],"scalp.":[201],"Based":[202],"all":[204],"experiments,":[206],"evident":[209],"(SzHNN)":[215],"provides":[216],"highest":[218],"accuracy":[220,248,271],"99.9%":[222],"other":[225],"existing":[229],"previous":[232],"papers.":[233],"overcomes":[237],"influence":[239],"shows":[245],"better":[247],"96.10%":[250],"(dataset":[251,255],"1)":[252],"91.00%":[254],"2)":[256],"only":[258],"five":[259],"electrodes.":[260],"Subject-wise":[261],"testing":[262],"done":[265],"SzHNN,":[267],"proposes":[269],"90.11%":[273],"89.60%":[275],"2,":[280],"respectively.":[281]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4312396856","counts_by_year":[{"year":2024,"cited_by_count":11},{"year":2023,"cited_by_count":4},{"year":2022,"cited_by_count":2}],"updated_date":"2024-12-30T20:22:40.932587","created_date":"2023-01-04"}