{"id":"https://openalex.org/W4285297920","doi":"https://doi.org/10.1109/tim.2022.3185312","title":"Multitask Learning-Based Self-Attention Encoding Atrous Convolutional Neural Network for Remaining Useful Life Prediction","display_name":"Multitask Learning-Based Self-Attention Encoding Atrous Convolutional Neural Network for Remaining Useful Life Prediction","publication_year":2022,"publication_date":"2022-01-01","ids":{"openalex":"https://openalex.org/W4285297920","doi":"https://doi.org/10.1109/tim.2022.3185312"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/tim.2022.3185312","pdf_url":null,"source":{"id":"https://openalex.org/S10892749","display_name":"IEEE Transactions on Instrumentation and Measurement","issn_l":"0018-9456","issn":["0018-9456","1557-9662"],"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":true,"is_core":true,"host_organization":"https://openalex.org/P4310319808","host_organization_name":"Institute of Electrical and Electronics Engineers","host_organization_lineage":["https://openalex.org/P4310319808"],"host_organization_lineage_names":["Institute of Electrical and Electronics Engineers"],"type":"journal"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"journal-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5100779575","display_name":"Huaqing Wang","orcid":"https://orcid.org/0000-0001-5333-0829"},"institutions":[{"id":"https://openalex.org/I75390827","display_name":"Beijing University of Chemical Technology","ror":"https://ror.org/00df5yc52","country_code":"CN","type":"funder","lineage":["https://openalex.org/I75390827"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Huaqing Wang","raw_affiliation_strings":["College of Mechanical and Electrical Engineering, Beijing University of Chemical Technology, Beijing, China"],"affiliations":[{"raw_affiliation_string":"College of Mechanical and Electrical Engineering, Beijing University of Chemical Technology, Beijing, China","institution_ids":["https://openalex.org/I75390827"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5061347451","display_name":"Tianjiao Lin","orcid":"https://orcid.org/0000-0003-2918-0642"},"institutions":[{"id":"https://openalex.org/I75390827","display_name":"Beijing University of Chemical Technology","ror":"https://ror.org/00df5yc52","country_code":"CN","type":"funder","lineage":["https://openalex.org/I75390827"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Tianjiao Lin","raw_affiliation_strings":["College of Mechanical and Electrical Engineering, Beijing University of Chemical Technology, Beijing, China"],"affiliations":[{"raw_affiliation_string":"College of Mechanical and Electrical Engineering, Beijing University of Chemical Technology, Beijing, China","institution_ids":["https://openalex.org/I75390827"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5086461425","display_name":"Lingli Cui","orcid":"https://orcid.org/0000-0003-2883-4018"},"institutions":[{"id":"https://openalex.org/I37796252","display_name":"Beijing University of Technology","ror":"https://ror.org/037b1pp87","country_code":"CN","type":"funder","lineage":["https://openalex.org/I37796252"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Lingli Cui","raw_affiliation_strings":["Key Laboratory of Advanced Manufacturing Technology, Beijing University of Technology, Beijing, China"],"affiliations":[{"raw_affiliation_string":"Key Laboratory of Advanced Manufacturing Technology, Beijing University of Technology, Beijing, China","institution_ids":["https://openalex.org/I37796252"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5074782832","display_name":"Bo Ma","orcid":"https://orcid.org/0000-0003-1359-8622"},"institutions":[{"id":"https://openalex.org/I75390827","display_name":"Beijing University of Chemical Technology","ror":"https://ror.org/00df5yc52","country_code":"CN","type":"funder","lineage":["https://openalex.org/I75390827"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Bo Ma","raw_affiliation_strings":["College of Mechanical and Electrical Engineering, Beijing University of Chemical Technology, Beijing, China"],"affiliations":[{"raw_affiliation_string":"College of Mechanical and Electrical Engineering, Beijing University of Chemical Technology, Beijing, China","institution_ids":["https://openalex.org/I75390827"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5034302229","display_name":"Zuoyi Dong","orcid":"https://orcid.org/0000-0003-1107-5115"},"institutions":[{"id":"https://openalex.org/I4210135812","display_name":"Sinochem Group (China)","ror":"https://ror.org/03x8vck69","country_code":"CN","type":"company","lineage":["https://openalex.org/I4210135812"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Zuoyi Dong","raw_affiliation_strings":["Sinochem Fertilizer Company Ltd., Beijing, China"],"affiliations":[{"raw_affiliation_string":"Sinochem Fertilizer Company Ltd., Beijing, China","institution_ids":["https://openalex.org/I4210135812"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5037890950","display_name":"Liuyang Song","orcid":"https://orcid.org/0000-0003-4297-1668"},"institutions":[{"id":"https://openalex.org/I75390827","display_name":"Beijing University of Chemical Technology","ror":"https://ror.org/00df5yc52","country_code":"CN","type":"funder","lineage":["https://openalex.org/I75390827"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Liuyang Song","raw_affiliation_strings":["College of Mechanical and Electrical Engineering, Beijing University of Chemical Technology, Beijing, China"],"affiliations":[{"raw_affiliation_string":"College of Mechanical and Electrical Engineering, Beijing University of Chemical Technology, Beijing, China","institution_ids":["https://openalex.org/I75390827"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":3,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":2.514,"has_fulltext":false,"cited_by_count":15,"citation_normalized_percentile":{"value":0.99995,"is_in_top_1_percent":true,"is_in_top_10_percent":true},"cited_by_percentile_year":{"min":94,"max":95},"biblio":{"volume":"71","issue":null,"first_page":"1","last_page":"8"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10220","display_name":"Machine Fault Diagnosis Techniques","score":0.9983,"subfield":{"id":"https://openalex.org/subfields/2207","display_name":"Control and Systems Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10220","display_name":"Machine Fault Diagnosis Techniques","score":0.9983,"subfield":{"id":"https://openalex.org/subfields/2207","display_name":"Control and Systems Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10876","display_name":"Fault Detection and Control Systems","score":0.9963,"subfield":{"id":"https://openalex.org/subfields/2207","display_name":"Control and Systems Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11357","display_name":"Risk and Safety Analysis","score":0.983,"subfield":{"id":"https://openalex.org/subfields/1804","display_name":"Statistics, Probability and Uncertainty"},"field":{"id":"https://openalex.org/fields/18","display_name":"Decision Sciences"},"domain":{"id":"https://openalex.org/domains/2","display_name":"Social Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/autoencoder","display_name":"Autoencoder","score":0.5197991},{"id":"https://openalex.org/keywords/feature","display_name":"Feature (linguistics)","score":0.41944566}],"concepts":[{"id":"https://openalex.org/C81363708","wikidata":"https://www.wikidata.org/wiki/Q17084460","display_name":"Convolutional neural network","level":2,"score":0.740868},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.68317616},{"id":"https://openalex.org/C125411270","wikidata":"https://www.wikidata.org/wiki/Q18653","display_name":"Encoding (memory)","level":2,"score":0.60688055},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.59543556},{"id":"https://openalex.org/C108583219","wikidata":"https://www.wikidata.org/wiki/Q197536","display_name":"Deep learning","level":2,"score":0.55313075},{"id":"https://openalex.org/C118505674","wikidata":"https://www.wikidata.org/wiki/Q42586063","display_name":"Encoder","level":2,"score":0.5463321},{"id":"https://openalex.org/C2780451532","wikidata":"https://www.wikidata.org/wiki/Q759676","display_name":"Task (project management)","level":2,"score":0.5418504},{"id":"https://openalex.org/C50644808","wikidata":"https://www.wikidata.org/wiki/Q192776","display_name":"Artificial neural network","level":2,"score":0.52878577},{"id":"https://openalex.org/C43214815","wikidata":"https://www.wikidata.org/wiki/Q7310987","display_name":"Reliability (semiconductor)","level":3,"score":0.52120984},{"id":"https://openalex.org/C101738243","wikidata":"https://www.wikidata.org/wiki/Q786435","display_name":"Autoencoder","level":3,"score":0.5197991},{"id":"https://openalex.org/C175551986","wikidata":"https://www.wikidata.org/wiki/Q47089","display_name":"Fault (geology)","level":2,"score":0.48703128},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.47056624},{"id":"https://openalex.org/C2776401178","wikidata":"https://www.wikidata.org/wiki/Q12050496","display_name":"Feature (linguistics)","level":2,"score":0.41944566},{"id":"https://openalex.org/C52622490","wikidata":"https://www.wikidata.org/wiki/Q1026626","display_name":"Feature extraction","level":2,"score":0.41101092},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.38657168},{"id":"https://openalex.org/C127413603","wikidata":"https://www.wikidata.org/wiki/Q11023","display_name":"Engineering","level":0,"score":0.16046047},{"id":"https://openalex.org/C163258240","wikidata":"https://www.wikidata.org/wiki/Q25342","display_name":"Power (physics)","level":2,"score":0.0},{"id":"https://openalex.org/C41895202","wikidata":"https://www.wikidata.org/wiki/Q8162","display_name":"Linguistics","level":1,"score":0.0},{"id":"https://openalex.org/C121332964","wikidata":"https://www.wikidata.org/wiki/Q413","display_name":"Physics","level":0,"score":0.0},{"id":"https://openalex.org/C138885662","wikidata":"https://www.wikidata.org/wiki/Q5891","display_name":"Philosophy","level":0,"score":0.0},{"id":"https://openalex.org/C201995342","wikidata":"https://www.wikidata.org/wiki/Q682496","display_name":"Systems engineering","level":1,"score":0.0},{"id":"https://openalex.org/C62520636","wikidata":"https://www.wikidata.org/wiki/Q944","display_name":"Quantum mechanics","level":1,"score":0.0},{"id":"https://openalex.org/C165205528","wikidata":"https://www.wikidata.org/wiki/Q83371","display_name":"Seismology","level":1,"score":0.0},{"id":"https://openalex.org/C127313418","wikidata":"https://www.wikidata.org/wiki/Q1069","display_name":"Geology","level":0,"score":0.0},{"id":"https://openalex.org/C111919701","wikidata":"https://www.wikidata.org/wiki/Q9135","display_name":"Operating system","level":1,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/tim.2022.3185312","pdf_url":null,"source":{"id":"https://openalex.org/S10892749","display_name":"IEEE Transactions on Instrumentation and Measurement","issn_l":"0018-9456","issn":["0018-9456","1557-9662"],"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":true,"is_core":true,"host_organization":"https://openalex.org/P4310319808","host_organization_name":"Institute of Electrical and Electronics Engineers","host_organization_lineage":["https://openalex.org/P4310319808"],"host_organization_lineage_names":["Institute of Electrical and Electronics Engineers"],"type":"journal"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[{"id":"https://metadata.un.org/sdg/12","display_name":"Responsible consumption and production","score":0.49}],"grants":[{"funder":"https://openalex.org/F4320321001","funder_display_name":"National Natural Science Foundation of China","award_id":"52075030"},{"funder":"https://openalex.org/F4320322919","funder_display_name":"Natural Science Foundation of Beijing Municipality","award_id":"3224067"}],"datasets":[],"versions":[],"referenced_works_count":34,"referenced_works":["https://openalex.org/W1974232343","https://openalex.org/W2044078910","https://openalex.org/W2053168335","https://openalex.org/W2055873761","https://openalex.org/W2064675550","https://openalex.org/W2085942406","https://openalex.org/W2106544870","https://openalex.org/W2143585755","https://openalex.org/W2157331557","https://openalex.org/W2252962308","https://openalex.org/W2280977705","https://openalex.org/W2415594836","https://openalex.org/W2624871570","https://openalex.org/W2753709519","https://openalex.org/W2768148617","https://openalex.org/W2773549135","https://openalex.org/W2883683208","https://openalex.org/W2897723802","https://openalex.org/W2904557656","https://openalex.org/W2921172367","https://openalex.org/W3011803685","https://openalex.org/W3030997042","https://openalex.org/W3038041534","https://openalex.org/W3082680318","https://openalex.org/W3137613462","https://openalex.org/W3138700964","https://openalex.org/W3183908579","https://openalex.org/W3191546606","https://openalex.org/W3210213066","https://openalex.org/W350034163","https://openalex.org/W4205144429","https://openalex.org/W4205567159","https://openalex.org/W4206742905","https://openalex.org/W4385245566"],"related_works":["https://openalex.org/W4283822356","https://openalex.org/W3131327266","https://openalex.org/W3013693939","https://openalex.org/W2734887215","https://openalex.org/W2566616303","https://openalex.org/W2159052453","https://openalex.org/W2147282173","https://openalex.org/W2129146436","https://openalex.org/W2032507829","https://openalex.org/W1950940422"],"abstract_inverted_index":{"Any":[0],"failure":[1],"of":[2,8,12,88,135,160,194],"the":[3,9,26,73,82,86,103,133,149,163,167,171,181,192],"turbofan":[4],"engine,":[5],"as":[6,72,102],"one":[7],"key":[10],"components":[11],"space":[13],"shuttle,":[14],"can":[15],"lead":[16],"to":[17,24,31,51,59,107,147,190],"serious":[18],"accidents.":[19],"Therefore,":[20],"it":[21],"is":[22,70,78,100,144,174,178],"necessary":[23],"predict":[25],"remaining":[27],"useful":[28],"life":[29],"(RUL)":[30],"guarantee":[32],"its":[33],"reliability":[34],"and":[35,96,116,170],"safety.":[36],"This":[37],"paper":[38,131],"proposes":[39],"a":[40,92,113,139],"multi-task":[41],"learning-based":[42],"self-attention":[43,97],"encoding":[44],"atrous":[45,65],"convolutional":[46,66],"neural":[47,67,125],"network":[48,68,106],"called":[49],"MSA-CNN":[50,155],"effectively":[52],"realizes":[53],"RUL":[54,119,169],"prediction.":[55,120],"Specifically,":[56],"in":[57,85,112,129],"order":[58],"extract":[60],"fault":[61],"feature":[62],"information,":[63],"an":[64],"(ACNN)":[69],"used":[71,101],"auxiliary":[74],"task":[75,105],"network,":[76],"which":[77,177],"more":[79],"efficient":[80],"than":[81,180],"traditional":[83],"CNN":[84],"process":[87],"down":[89],"sampling.":[90],"Moreover,":[91],"model":[93],"with":[94,122],"ACNN":[95],"encoder":[98],"(SAE)":[99],"main":[104],"capture":[108],"short-long":[109],"term":[110],"dependencies":[111],"time":[114],"sequence":[115],"thus":[117],"realize":[118,148],"Compared":[121],"other":[123,185],"recurrent":[124],"networks,":[126],"SAE":[127],"proposed":[128,146],"this":[130],"has":[132],"advantage":[134],"parallel":[136],"computation.":[137],"Besides,":[138],"novel":[140],"multi-tasking":[141],"loss":[142],"function":[143],"also":[145],"interaction":[150],"among":[151],"multiple":[152],"tasks.":[153],"After":[154],"experiments":[156,187],"on":[157],"four":[158],"subsets":[159],"C-MAPSS":[161],"dataset,":[162],"RMSE":[164],"average":[165],"between":[166],"predicted":[168],"real":[172],"value":[173],"about":[175],"14.66,":[176],"better":[179],"existing":[182],"methods.":[183],"Several":[184],"comparative":[186],"were":[188],"conducted":[189],"verify":[191],"benefits":[193],"each":[195],"submodule.":[196]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4285297920","counts_by_year":[{"year":2025,"cited_by_count":1},{"year":2024,"cited_by_count":7},{"year":2023,"cited_by_count":4},{"year":2022,"cited_by_count":3}],"updated_date":"2025-02-24T06:24:08.335087","created_date":"2022-07-14"}