{"id":"https://openalex.org/W4285113998","doi":"https://doi.org/10.1109/tim.2022.3184353","title":"A Divisive Hierarchical Clustering Approach to Hyperspectral Band Selection","display_name":"A Divisive Hierarchical Clustering Approach to Hyperspectral Band Selection","publication_year":2022,"publication_date":"2022-01-01","ids":{"openalex":"https://openalex.org/W4285113998","doi":"https://doi.org/10.1109/tim.2022.3184353"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/tim.2022.3184353","pdf_url":null,"source":{"id":"https://openalex.org/S10892749","display_name":"IEEE Transactions on Instrumentation and Measurement","issn_l":"0018-9456","issn":["0018-9456","1557-9662"],"is_oa":false,"is_in_doaj":false,"is_core":true,"host_organization":"https://openalex.org/P4310319808","host_organization_name":"Institute of Electrical and Electronics Engineers","host_organization_lineage":["https://openalex.org/P4310319808"],"host_organization_lineage_names":["Institute of Electrical and Electronics Engineers"],"type":"journal"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"journal-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5038151368","display_name":"Haochen Ji","orcid":"https://orcid.org/0000-0001-8021-2940"},"institutions":[{"id":"https://openalex.org/I82880672","display_name":"Beihang University","ror":"https://ror.org/00wk2mp56","country_code":"CN","type":"education","lineage":["https://openalex.org/I82880672"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Haochen Ji","raw_affiliation_strings":["Seventh Research Division, Beihang University (BUAA), Beijing, China"],"affiliations":[{"raw_affiliation_string":"Seventh Research Division, Beihang University (BUAA), Beijing, China","institution_ids":["https://openalex.org/I82880672"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5087628687","display_name":"Zongyu Zuo","orcid":"https://orcid.org/0000-0003-3444-9538"},"institutions":[{"id":"https://openalex.org/I82880672","display_name":"Beihang University","ror":"https://ror.org/00wk2mp56","country_code":"CN","type":"education","lineage":["https://openalex.org/I82880672"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Zongyu Zuo","raw_affiliation_strings":["Seventh Research Division, Beihang University (BUAA), Beijing, China"],"affiliations":[{"raw_affiliation_string":"Seventh Research Division, Beihang University (BUAA), Beijing, China","institution_ids":["https://openalex.org/I82880672"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5083874423","display_name":"Qing\u2010Long Han","orcid":"https://orcid.org/0000-0002-7207-0716"},"institutions":[{"id":"https://openalex.org/I57093077","display_name":"Swinburne University of Technology","ror":"https://ror.org/031rekg67","country_code":"AU","type":"education","lineage":["https://openalex.org/I57093077"]}],"countries":["AU"],"is_corresponding":false,"raw_author_name":"Qing-Long Han","raw_affiliation_strings":["School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Melbourne, VIC, Australia"],"affiliations":[{"raw_affiliation_string":"School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Melbourne, VIC, Australia","institution_ids":["https://openalex.org/I57093077"]}]}],"institution_assertions":[],"countries_distinct_count":2,"institutions_distinct_count":2,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":2.272,"has_fulltext":false,"cited_by_count":13,"citation_normalized_percentile":{"value":0.999799,"is_in_top_1_percent":true,"is_in_top_10_percent":true},"cited_by_percentile_year":{"min":93,"max":94},"biblio":{"volume":"71","issue":null,"first_page":"1","last_page":"12"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10689","display_name":"Remote-Sensing Image Classification","score":1.0,"subfield":{"id":"https://openalex.org/subfields/2214","display_name":"Media Technology"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10689","display_name":"Remote-Sensing Image Classification","score":1.0,"subfield":{"id":"https://openalex.org/subfields/2214","display_name":"Media Technology"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T13890","display_name":"Remote Sensing and Land Use","score":0.9831,"subfield":{"id":"https://openalex.org/subfields/1902","display_name":"Atmospheric Science"},"field":{"id":"https://openalex.org/fields/19","display_name":"Earth and Planetary Sciences"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11667","display_name":"Advanced Chemical Sensor Technologies","score":0.9772,"subfield":{"id":"https://openalex.org/subfields/2204","display_name":"Biomedical Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/hierarchical-clustering","display_name":"Hierarchical clustering","score":0.7231176},{"id":"https://openalex.org/keywords/hyperspectral-imaging","display_name":"Hyperspectral Imaging","score":0.545222},{"id":"https://openalex.org/keywords/hyperspectral","display_name":"Hyperspectral","score":0.526928}],"concepts":[{"id":"https://openalex.org/C159078339","wikidata":"https://www.wikidata.org/wiki/Q959005","display_name":"Hyperspectral imaging","level":2,"score":0.80278677},{"id":"https://openalex.org/C73555534","wikidata":"https://www.wikidata.org/wiki/Q622825","display_name":"Cluster analysis","level":2,"score":0.75174105},{"id":"https://openalex.org/C92835128","wikidata":"https://www.wikidata.org/wiki/Q1277447","display_name":"Hierarchical clustering","level":3,"score":0.7231176},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.64558876},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.6066873},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.60666615},{"id":"https://openalex.org/C70518039","wikidata":"https://www.wikidata.org/wiki/Q16000077","display_name":"Dimensionality reduction","level":2,"score":0.51137465},{"id":"https://openalex.org/C81917197","wikidata":"https://www.wikidata.org/wiki/Q628760","display_name":"Selection (genetic algorithm)","level":2,"score":0.46512008},{"id":"https://openalex.org/C124101348","wikidata":"https://www.wikidata.org/wiki/Q172491","display_name":"Data mining","level":1,"score":0.44791636},{"id":"https://openalex.org/C27438332","wikidata":"https://www.wikidata.org/wiki/Q2873","display_name":"Principal component analysis","level":2,"score":0.42376423}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/tim.2022.3184353","pdf_url":null,"source":{"id":"https://openalex.org/S10892749","display_name":"IEEE Transactions on Instrumentation and Measurement","issn_l":"0018-9456","issn":["0018-9456","1557-9662"],"is_oa":false,"is_in_doaj":false,"is_core":true,"host_organization":"https://openalex.org/P4310319808","host_organization_name":"Institute of Electrical and Electronics Engineers","host_organization_lineage":["https://openalex.org/P4310319808"],"host_organization_lineage_names":["Institute of Electrical and Electronics Engineers"],"type":"journal"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[],"grants":[{"funder":"https://openalex.org/F4320321001","funder_display_name":"National Natural Science Foundation of China","award_id":"62073019"}],"datasets":[],"versions":[],"referenced_works_count":40,"referenced_works":["https://openalex.org/W1128809682","https://openalex.org/W1493454437","https://openalex.org/W1932531222","https://openalex.org/W1976383685","https://openalex.org/W1976882674","https://openalex.org/W1980007140","https://openalex.org/W2017360846","https://openalex.org/W2043945532","https://openalex.org/W2047029347","https://openalex.org/W2053186076","https://openalex.org/W2059497048","https://openalex.org/W2071185414","https://openalex.org/W2089372326","https://openalex.org/W2098057602","https://openalex.org/W2099741732","https://openalex.org/W2109836508","https://openalex.org/W2128728535","https://openalex.org/W2139223026","https://openalex.org/W2141188346","https://openalex.org/W2145669224","https://openalex.org/W2146344928","https://openalex.org/W2150566919","https://openalex.org/W2150990614","https://openalex.org/W2165232124","https://openalex.org/W2165835468","https://openalex.org/W2166923144","https://openalex.org/W2288723698","https://openalex.org/W2316226477","https://openalex.org/W2595902385","https://openalex.org/W2611652207","https://openalex.org/W2740062333","https://openalex.org/W2744432268","https://openalex.org/W2750827587","https://openalex.org/W2789249105","https://openalex.org/W2950325582","https://openalex.org/W2978620371","https://openalex.org/W3013882333","https://openalex.org/W3126760591","https://openalex.org/W3150214740","https://openalex.org/W4282040354"],"related_works":["https://openalex.org/W4389669152","https://openalex.org/W4387893611","https://openalex.org/W4317486777","https://openalex.org/W2579148721","https://openalex.org/W2347335694","https://openalex.org/W2091056927","https://openalex.org/W2067407580","https://openalex.org/W2038514069","https://openalex.org/W2009181529","https://openalex.org/W1967233468"],"abstract_inverted_index":{"Band":[0],"selection,":[1,29],"considered":[2],"as":[3],"an":[4,51],"effective":[5],"dimensionality":[6],"reduction":[7],"technique":[8],"for":[9,18],"hyperspectral":[10,91,114],"imagery":[11],"(HSI),":[12],"has":[13],"become":[14],"a":[15,31,70,84,151,167],"hot":[16],"topic":[17],"decades.":[19],"Although":[20],"various":[21],"clustering-based":[22],"methods":[23],"have":[24],"been":[25],"applied":[26],"to":[27,45,63,90,101,161],"band":[28,59,92,106,153,164],"only":[30],"few":[32],"studies":[33],"explored":[34],"the":[35,66,74,110,119,128,134,137,142,158,163,180,183],"hierarchical":[36,47,86],"structure":[37],"among":[38,146],"different":[39],"spectral":[40],"bands.":[41,147],"And":[42],"with":[43,166],"regard":[44],"conventional":[46],"clustering,":[48],"implemented":[49],"in":[50,73,154],"agglomerative":[52],"manner,":[53],"both":[54],"efficiency":[55],"and":[56],"accuracy":[57],"of":[58,76,105,113,136,182],"selection":[60],"still":[61],"remain":[62],"rise.":[64],"Moreover,":[65],"noise":[67],"sensitivity":[68],"is":[69,99],"defect":[71],"inherent":[72],"procedure":[75],"clustering.":[77],"To":[78],"address":[79],"these":[80],"issues,":[81],"we":[82,149],"propose":[83],"divisive":[85,96],"clustering":[87,130],"approach":[88],"(DHCA)":[89],"selection.":[93],"Inspired":[94],"by":[95],"analysis,":[97],"DHCA":[98],"designed":[100],"obtain":[102],"any":[103],"number":[104],"subsets,":[107],"which":[108],"captures":[109],"intrinsic":[111],"hierarchy":[112],"bands":[115],"simultaneously.":[116],"By":[117],"introducing":[118],"local":[120],"density":[121],"into":[122],"average":[123],"dissimilarity,":[124],"it":[125],"can":[126],"suppress":[127],"outliers":[129],"separately.":[131],"Also,":[132],"given":[133],"order":[135],"spectrum,":[138],"channel":[139],"interval":[140],"makes":[141],"similarity":[143],"more":[144],"rational":[145],"Finally,":[148],"select":[150],"representative":[152],"each":[155],"cluster":[156],"from":[157],"information":[159],"viewpoint":[160],"ensure":[162],"subset":[165],"high":[168],"quality.":[169],"Extensive":[170],"experiments":[171],"on":[172],"three":[173],"real":[174],"public":[175],"HSI":[176],"datasets":[177],"fully":[178],"validate":[179],"superiority":[181],"proposed":[184],"method":[185],"against":[186],"state-of-the-art":[187],"competitors.":[188]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4285113998","counts_by_year":[{"year":2024,"cited_by_count":4},{"year":2023,"cited_by_count":7},{"year":2022,"cited_by_count":2}],"updated_date":"2024-12-05T14:00:20.671954","created_date":"2022-07-14"}