{"id":"https://openalex.org/W4213436958","doi":"https://doi.org/10.1109/tim.2022.3153997","title":"A Small-Sized Object Detection Oriented Multi-Scale Feature Fusion Approach With Application to Defect Detection","display_name":"A Small-Sized Object Detection Oriented Multi-Scale Feature Fusion Approach With Application to Defect Detection","publication_year":2022,"publication_date":"2022-01-01","ids":{"openalex":"https://openalex.org/W4213436958","doi":"https://doi.org/10.1109/tim.2022.3153997"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/tim.2022.3153997","pdf_url":null,"source":{"id":"https://openalex.org/S10892749","display_name":"IEEE Transactions on Instrumentation and Measurement","issn_l":"0018-9456","issn":["0018-9456","1557-9662"],"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":true,"is_core":true,"host_organization":"https://openalex.org/P4310319808","host_organization_name":"Institute of Electrical and Electronics Engineers","host_organization_lineage":["https://openalex.org/P4310319808"],"host_organization_lineage_names":["Institute of Electrical and Electronics Engineers"],"type":"journal"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"journal-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5025693167","display_name":"Nianyin Zeng","orcid":"https://orcid.org/0000-0002-6957-2942"},"institutions":[{"id":"https://openalex.org/I191208505","display_name":"Xiamen University","ror":"https://ror.org/00mcjh785","country_code":"CN","type":"education","lineage":["https://openalex.org/I191208505"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Nianyin Zeng","raw_affiliation_strings":["Department of Instrumental and Electrical Engineering, Xiamen University, Fujian, Xiamen, China"],"affiliations":[{"raw_affiliation_string":"Department of Instrumental and Electrical Engineering, Xiamen University, Fujian, Xiamen, China","institution_ids":["https://openalex.org/I191208505"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5067612540","display_name":"Peishu Wu","orcid":"https://orcid.org/0000-0001-9891-3809"},"institutions":[{"id":"https://openalex.org/I191208505","display_name":"Xiamen University","ror":"https://ror.org/00mcjh785","country_code":"CN","type":"education","lineage":["https://openalex.org/I191208505"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Peishu Wu","raw_affiliation_strings":["Department of Instrumental and Electrical Engineering, Xiamen University, Fujian, Xiamen, China"],"affiliations":[{"raw_affiliation_string":"Department of Instrumental and Electrical Engineering, Xiamen University, Fujian, Xiamen, China","institution_ids":["https://openalex.org/I191208505"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5100699858","display_name":"Zidong Wang","orcid":"https://orcid.org/0000-0002-9576-7401"},"institutions":[{"id":"https://openalex.org/I59433898","display_name":"Brunel University of London","ror":"https://ror.org/00dn4t376","country_code":"GB","type":"education","lineage":["https://openalex.org/I59433898"]}],"countries":["GB"],"is_corresponding":false,"raw_author_name":"Zidong Wang","raw_affiliation_strings":["Department of Computer Science, Brunel University London, Uxbridge, U.K"],"affiliations":[{"raw_affiliation_string":"Department of Computer Science, Brunel University London, Uxbridge, U.K","institution_ids":["https://openalex.org/I59433898"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5100452614","display_name":"Han Li","orcid":"https://orcid.org/0000-0003-0276-9756"},"institutions":[{"id":"https://openalex.org/I191208505","display_name":"Xiamen University","ror":"https://ror.org/00mcjh785","country_code":"CN","type":"education","lineage":["https://openalex.org/I191208505"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Han Li","raw_affiliation_strings":["Department of Instrumental and Electrical Engineering, Xiamen University, Fujian, Xiamen, China"],"affiliations":[{"raw_affiliation_string":"Department of Instrumental and Electrical Engineering, Xiamen University, Fujian, Xiamen, China","institution_ids":["https://openalex.org/I191208505"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5101519817","display_name":"Weibo Liu","orcid":"https://orcid.org/0000-0002-8169-3261"},"institutions":[{"id":"https://openalex.org/I59433898","display_name":"Brunel University of London","ror":"https://ror.org/00dn4t376","country_code":"GB","type":"education","lineage":["https://openalex.org/I59433898"]}],"countries":["GB"],"is_corresponding":false,"raw_author_name":"Weibo Liu","raw_affiliation_strings":["Department of Computer Science, Brunel University London, Uxbridge, U.K"],"affiliations":[{"raw_affiliation_string":"Department of Computer Science, Brunel University London, Uxbridge, U.K","institution_ids":["https://openalex.org/I59433898"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5100375376","display_name":"Xiaohui Liu","orcid":"https://orcid.org/0000-0003-1589-1267"},"institutions":[{"id":"https://openalex.org/I59433898","display_name":"Brunel University of London","ror":"https://ror.org/00dn4t376","country_code":"GB","type":"education","lineage":["https://openalex.org/I59433898"]}],"countries":["GB"],"is_corresponding":false,"raw_author_name":"Xiaohui Liu","raw_affiliation_strings":["Department of Computer Science, Brunel University London, Uxbridge, U.K"],"affiliations":[{"raw_affiliation_string":"Department of Computer Science, Brunel University London, Uxbridge, U.K","institution_ids":["https://openalex.org/I59433898"]}]}],"institution_assertions":[],"countries_distinct_count":2,"institutions_distinct_count":2,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":51.831,"has_fulltext":false,"cited_by_count":287,"citation_normalized_percentile":{"value":0.999909,"is_in_top_1_percent":true,"is_in_top_10_percent":true},"cited_by_percentile_year":{"min":99,"max":100},"biblio":{"volume":"71","issue":null,"first_page":"1","last_page":"14"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T12111","display_name":"Industrial Vision Systems and Defect Detection","score":0.9999,"subfield":{"id":"https://openalex.org/subfields/2209","display_name":"Industrial and Manufacturing Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T12111","display_name":"Industrial Vision Systems and Defect Detection","score":0.9999,"subfield":{"id":"https://openalex.org/subfields/2209","display_name":"Industrial and Manufacturing Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10036","display_name":"Advanced Neural Network Applications","score":0.9997,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11605","display_name":"Visual Attention and Saliency Detection","score":0.9949,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/pyramid","display_name":"Pyramid (geometry)","score":0.66437125},{"id":"https://openalex.org/keywords/feature","display_name":"Feature (linguistics)","score":0.52575165},{"id":"https://openalex.org/keywords/benchmark","display_name":"Benchmark (surveying)","score":0.48791},{"id":"https://openalex.org/keywords/pooling","display_name":"Pooling","score":0.4715999}],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.70792514},{"id":"https://openalex.org/C2776151529","wikidata":"https://www.wikidata.org/wiki/Q3045304","display_name":"Object detection","level":3,"score":0.675197},{"id":"https://openalex.org/C142575187","wikidata":"https://www.wikidata.org/wiki/Q3358290","display_name":"Pyramid (geometry)","level":2,"score":0.66437125},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.6004472},{"id":"https://openalex.org/C2776401178","wikidata":"https://www.wikidata.org/wiki/Q12050496","display_name":"Feature (linguistics)","level":2,"score":0.52575165},{"id":"https://openalex.org/C52622490","wikidata":"https://www.wikidata.org/wiki/Q1026626","display_name":"Feature extraction","level":2,"score":0.51242906},{"id":"https://openalex.org/C185798385","wikidata":"https://www.wikidata.org/wiki/Q1161707","display_name":"Benchmark (surveying)","level":2,"score":0.48791},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.48240435},{"id":"https://openalex.org/C2779343474","wikidata":"https://www.wikidata.org/wiki/Q3109175","display_name":"Context (archaeology)","level":2,"score":0.47322595},{"id":"https://openalex.org/C70437156","wikidata":"https://www.wikidata.org/wiki/Q7228652","display_name":"Pooling","level":2,"score":0.4715999},{"id":"https://openalex.org/C31972630","wikidata":"https://www.wikidata.org/wiki/Q844240","display_name":"Computer vision","level":1,"score":0.37431505},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.08852479},{"id":"https://openalex.org/C151730666","wikidata":"https://www.wikidata.org/wiki/Q7205","display_name":"Paleontology","level":1,"score":0.0},{"id":"https://openalex.org/C41895202","wikidata":"https://www.wikidata.org/wiki/Q8162","display_name":"Linguistics","level":1,"score":0.0},{"id":"https://openalex.org/C138885662","wikidata":"https://www.wikidata.org/wiki/Q5891","display_name":"Philosophy","level":0,"score":0.0},{"id":"https://openalex.org/C2524010","wikidata":"https://www.wikidata.org/wiki/Q8087","display_name":"Geometry","level":1,"score":0.0},{"id":"https://openalex.org/C13280743","wikidata":"https://www.wikidata.org/wiki/Q131089","display_name":"Geodesy","level":1,"score":0.0},{"id":"https://openalex.org/C86803240","wikidata":"https://www.wikidata.org/wiki/Q420","display_name":"Biology","level":0,"score":0.0},{"id":"https://openalex.org/C205649164","wikidata":"https://www.wikidata.org/wiki/Q1071","display_name":"Geography","level":0,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/tim.2022.3153997","pdf_url":null,"source":{"id":"https://openalex.org/S10892749","display_name":"IEEE Transactions on Instrumentation and Measurement","issn_l":"0018-9456","issn":["0018-9456","1557-9662"],"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":true,"is_core":true,"host_organization":"https://openalex.org/P4310319808","host_organization_name":"Institute of Electrical and Electronics Engineers","host_organization_lineage":["https://openalex.org/P4310319808"],"host_organization_lineage_names":["Institute of Electrical and Electronics Engineers"],"type":"journal"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[],"grants":[{"funder":"https://openalex.org/F4320317314","funder_display_name":"Science and Technology Projects of Fujian Province","award_id":"2019I0003"},{"funder":"https://openalex.org/F4320321001","funder_display_name":"National Natural Science Foundation of China","award_id":"62073271"}],"datasets":[],"versions":[],"referenced_works_count":58,"referenced_works":["https://openalex.org/W1536680647","https://openalex.org/W1686810756","https://openalex.org/W1832500336","https://openalex.org/W1861492603","https://openalex.org/W2031489346","https://openalex.org/W2102605133","https://openalex.org/W2109255472","https://openalex.org/W2144506857","https://openalex.org/W2194775991","https://openalex.org/W2412782625","https://openalex.org/W2549139847","https://openalex.org/W2565639579","https://openalex.org/W2570343428","https://openalex.org/W2625219738","https://openalex.org/W2753041493","https://openalex.org/W2765407302","https://openalex.org/W2799213142","https://openalex.org/W2806070179","https://openalex.org/W2913859453","https://openalex.org/W2941001797","https://openalex.org/W2949736877","https://openalex.org/W2962721361","https://openalex.org/W2962747122","https://openalex.org/W2963037989","https://openalex.org/W2963091558","https://openalex.org/W2963381188","https://openalex.org/W2963420686","https://openalex.org/W2963786238","https://openalex.org/W2963857746","https://openalex.org/W2964080601","https://openalex.org/W2964121718","https://openalex.org/W2966926453","https://openalex.org/W2971587923","https://openalex.org/W2972120791","https://openalex.org/W2982770724","https://openalex.org/W2985405845","https://openalex.org/W2988452521","https://openalex.org/W2989676862","https://openalex.org/W2991089415","https://openalex.org/W2997747012","https://openalex.org/W3012573144","https://openalex.org/W3018757597","https://openalex.org/W3034713821","https://openalex.org/W3043944662","https://openalex.org/W3092462694","https://openalex.org/W3106250896","https://openalex.org/W3127930879","https://openalex.org/W3131013500","https://openalex.org/W3132795731","https://openalex.org/W3164289800","https://openalex.org/W3166033322","https://openalex.org/W3192118100","https://openalex.org/W3205100603","https://openalex.org/W3214474910","https://openalex.org/W3215453560","https://openalex.org/W4293584584","https://openalex.org/W4318619689","https://openalex.org/W639708223"],"related_works":["https://openalex.org/W4390721878","https://openalex.org/W4390224712","https://openalex.org/W4322096758","https://openalex.org/W4287991909","https://openalex.org/W3081299480","https://openalex.org/W3002446410","https://openalex.org/W2919210741","https://openalex.org/W2907584218","https://openalex.org/W2407190427","https://openalex.org/W2022849497"],"abstract_inverted_index":{"Object":[0],"detection":[1,16,29,165,197],"is":[2,44,78,88,106,119,141,185],"a":[3,37,89,120,193],"well-known":[4],"task":[5],"in":[6,34,128,135],"the":[7,13,28,47,57,75,103,132,138,149,157,170,181,201,204,209,217,220],"field":[8],"of":[9,31,71,102,148,160,203,219],"computer":[10],"vision,":[11],"especially":[12],"small":[14,32,136],"target":[15],"problem":[17],"that":[18,117],"has":[19],"aroused":[20],"great":[21],"academic":[22],"attention.":[23],"In":[24,55,85],"order":[25,129],"to":[26,67,80,92,130,143,178],"improve":[27,180],"performance":[30,101],"objects,":[33,137],"this":[35],"article,":[36],"novel":[38],"enhanced":[39],"multiscale":[40],"feature":[41,83,124],"fusion":[42,125],"method":[43],"proposed,":[45],"namely,":[46],"atrous":[48,58],"spatial":[49],"pyramid":[50,52],"pooling-balanced-feature":[51],"network":[53],"(ABFPN).":[54],"particular,":[56],"convolution":[59],"operators":[60],"with":[61],"different":[62,98],"dilation":[63],"rates":[64],"are":[65,175],"employed":[66,177],"make":[68],"full":[69],"use":[70],"context":[72],"information,":[73],"where":[74],"skip":[76],"connection":[77],"applied":[79],"achieve":[81],"sufficient":[82],"fusions.":[84],"addition,":[86],"there":[87],"balanced":[90],"module":[91],"integrate":[93],"and":[94,113,122],"enhance":[95],"features":[96],"at":[97],"levels.":[99],"The":[100],"proposed":[104,221],"ABFPN":[105,140],"evaluated":[107,186],"on":[108,192],"three":[109],"public":[110,194],"benchmark":[111],"datasets,":[112],"experimental":[114],"results":[115],"demonstrate":[116],"it":[118],"reliable":[121],"efficient":[123],"method.":[126],"Furthermore,":[127],"validate":[131],"applicational":[133],"potential":[134],"developed":[139],"utilized":[142],"detect":[144],"surface":[145],"tiny":[146],"defects":[147],"printed":[150],"circuit":[151],"board":[152],"(PCB),":[153],"which":[154,184,214],"acts":[155],"as":[156],"neck":[158],"part":[159],"an":[161],"improved":[162],"PCB":[163,195],"defect":[164,196],"(IPDD)":[166],"framework.":[167],"While":[168],"designing":[169],"IPDD,":[171],"several":[172],"powerful":[173],"strategies":[174],"also":[176],"further":[179,215],"overall":[182],"performance,":[183],"via":[187],"extensive":[188],"ablation":[189],"studies.":[190],"Experiments":[191],"database":[198],"have":[199],"demonstrated":[200],"superiority":[202],"designed":[205],"IPDD":[206],"framework":[207],"against":[208],"other":[210],"seven":[211],"state-of-the-art":[212],"methods,":[213],"validates":[216],"practicality":[218],"ABFPN.":[222]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4213436958","counts_by_year":[{"year":2024,"cited_by_count":121},{"year":2023,"cited_by_count":108},{"year":2022,"cited_by_count":50}],"updated_date":"2025-01-23T00:25:53.422913","created_date":"2022-02-25"}