{"id":"https://openalex.org/W2991661665","doi":"https://doi.org/10.1109/tim.2019.2958010","title":"Deep Ensemble Capsule Network for Intelligent Compound Fault Diagnosis Using Multisensory Data","display_name":"Deep Ensemble Capsule Network for Intelligent Compound Fault Diagnosis Using Multisensory Data","publication_year":2019,"publication_date":"2019-12-05","ids":{"openalex":"https://openalex.org/W2991661665","doi":"https://doi.org/10.1109/tim.2019.2958010","mag":"2991661665"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/tim.2019.2958010","pdf_url":null,"source":{"id":"https://openalex.org/S10892749","display_name":"IEEE Transactions on Instrumentation and Measurement","issn_l":"0018-9456","issn":["0018-9456","1557-9662"],"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":true,"is_core":true,"host_organization":"https://openalex.org/P4310319808","host_organization_name":"Institute of Electrical and Electronics Engineers","host_organization_lineage":["https://openalex.org/P4310319808"],"host_organization_lineage_names":["Institute of Electrical and Electronics Engineers"],"type":"journal"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"journal-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5082065343","display_name":"Ruyi Huang","orcid":"https://orcid.org/0000-0003-0586-1195"},"institutions":[{"id":"https://openalex.org/I90610280","display_name":"South China University of Technology","ror":"https://ror.org/0530pts50","country_code":"CN","type":"funder","lineage":["https://openalex.org/I90610280"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Ruyi Huang","raw_affiliation_strings":["School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou, China"],"affiliations":[{"raw_affiliation_string":"School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou, China","institution_ids":["https://openalex.org/I90610280"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5037156903","display_name":"Jipu Li","orcid":"https://orcid.org/0000-0002-9113-1465"},"institutions":[{"id":"https://openalex.org/I90610280","display_name":"South China University of Technology","ror":"https://ror.org/0530pts50","country_code":"CN","type":"funder","lineage":["https://openalex.org/I90610280"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Jipu Li","raw_affiliation_strings":["School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou, China"],"affiliations":[{"raw_affiliation_string":"School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou, China","institution_ids":["https://openalex.org/I90610280"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5010684849","display_name":"Weihua Li","orcid":"https://orcid.org/0000-0002-7493-1399"},"institutions":[{"id":"https://openalex.org/I90610280","display_name":"South China University of Technology","ror":"https://ror.org/0530pts50","country_code":"CN","type":"funder","lineage":["https://openalex.org/I90610280"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Weihua Li","raw_affiliation_strings":["School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou, China"],"affiliations":[{"raw_affiliation_string":"School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou, China","institution_ids":["https://openalex.org/I90610280"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5086461425","display_name":"Lingli Cui","orcid":"https://orcid.org/0000-0003-2883-4018"},"institutions":[{"id":"https://openalex.org/I37796252","display_name":"Beijing University of Technology","ror":"https://ror.org/037b1pp87","country_code":"CN","type":"funder","lineage":["https://openalex.org/I37796252"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Lingli Cui","raw_affiliation_strings":["Beijing Engineering Research Center of Precision Measurement Technology and Instruments, Beijing University of Technology, Beijing, China"],"affiliations":[{"raw_affiliation_string":"Beijing Engineering Research Center of Precision Measurement Technology and Instruments, Beijing University of Technology, Beijing, China","institution_ids":["https://openalex.org/I37796252"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":2,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":5.731,"has_fulltext":false,"cited_by_count":79,"citation_normalized_percentile":{"value":0.877553,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":98,"max":99},"biblio":{"volume":"69","issue":"5","first_page":"2304","last_page":"2314"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T14319","display_name":"Currency Recognition and Detection","score":0.9762,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T14319","display_name":"Currency Recognition and Detection","score":0.9762,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11667","display_name":"Advanced Chemical Sensor Technologies","score":0.97,"subfield":{"id":"https://openalex.org/subfields/2204","display_name":"Biomedical Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T12111","display_name":"Industrial Vision Systems and Defect Detection","score":0.9602,"subfield":{"id":"https://openalex.org/subfields/2209","display_name":"Industrial and Manufacturing Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/decoupling","display_name":"Decoupling (probability)","score":0.7415459},{"id":"https://openalex.org/keywords/ensemble-learning","display_name":"Ensemble Learning","score":0.4154963}],"concepts":[{"id":"https://openalex.org/C205606062","wikidata":"https://www.wikidata.org/wiki/Q5249645","display_name":"Decoupling (probability)","level":2,"score":0.7415459},{"id":"https://openalex.org/C108583219","wikidata":"https://www.wikidata.org/wiki/Q197536","display_name":"Deep learning","level":2,"score":0.6157465},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.61215997},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.5684011},{"id":"https://openalex.org/C175551986","wikidata":"https://www.wikidata.org/wiki/Q47089","display_name":"Fault (geology)","level":2,"score":0.5653941},{"id":"https://openalex.org/C67186912","wikidata":"https://www.wikidata.org/wiki/Q367664","display_name":"Data modeling","level":2,"score":0.5054698},{"id":"https://openalex.org/C75684735","wikidata":"https://www.wikidata.org/wiki/Q858810","display_name":"Big data","level":2,"score":0.4838223},{"id":"https://openalex.org/C152745839","wikidata":"https://www.wikidata.org/wiki/Q5438153","display_name":"Fault detection and isolation","level":3,"score":0.45764655},{"id":"https://openalex.org/C45942800","wikidata":"https://www.wikidata.org/wiki/Q245652","display_name":"Ensemble learning","level":2,"score":0.4154963},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.34024388},{"id":"https://openalex.org/C124101348","wikidata":"https://www.wikidata.org/wiki/Q172491","display_name":"Data mining","level":1,"score":0.3042215},{"id":"https://openalex.org/C127413603","wikidata":"https://www.wikidata.org/wiki/Q11023","display_name":"Engineering","level":0,"score":0.29770255},{"id":"https://openalex.org/C133731056","wikidata":"https://www.wikidata.org/wiki/Q4917288","display_name":"Control engineering","level":1,"score":0.19232476},{"id":"https://openalex.org/C77088390","wikidata":"https://www.wikidata.org/wiki/Q8513","display_name":"Database","level":1,"score":0.0},{"id":"https://openalex.org/C172707124","wikidata":"https://www.wikidata.org/wiki/Q423488","display_name":"Actuator","level":2,"score":0.0},{"id":"https://openalex.org/C165205528","wikidata":"https://www.wikidata.org/wiki/Q83371","display_name":"Seismology","level":1,"score":0.0},{"id":"https://openalex.org/C127313418","wikidata":"https://www.wikidata.org/wiki/Q1069","display_name":"Geology","level":0,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/tim.2019.2958010","pdf_url":null,"source":{"id":"https://openalex.org/S10892749","display_name":"IEEE Transactions on Instrumentation and Measurement","issn_l":"0018-9456","issn":["0018-9456","1557-9662"],"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":true,"is_core":true,"host_organization":"https://openalex.org/P4310319808","host_organization_name":"Institute of Electrical and Electronics Engineers","host_organization_lineage":["https://openalex.org/P4310319808"],"host_organization_lineage_names":["Institute of Electrical and Electronics Engineers"],"type":"journal"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[{"display_name":"Industry, innovation and infrastructure","id":"https://metadata.un.org/sdg/9","score":0.66}],"grants":[{"funder":"https://openalex.org/F4320321001","funder_display_name":"National Natural Science Foundation of China","award_id":"51875208"},{"funder":"https://openalex.org/F4320335777","funder_display_name":"National Key Research and Development Program of China","award_id":"2018YFB1702400"}],"datasets":[],"versions":[],"referenced_works_count":47,"referenced_works":["https://openalex.org/W1522301498","https://openalex.org/W2163605009","https://openalex.org/W2210061839","https://openalex.org/W2219903032","https://openalex.org/W2287972354","https://openalex.org/W2405466420","https://openalex.org/W2562762876","https://openalex.org/W2584994008","https://openalex.org/W2603304445","https://openalex.org/W2609688418","https://openalex.org/W2747276445","https://openalex.org/W2767031373","https://openalex.org/W2783074568","https://openalex.org/W2784294927","https://openalex.org/W2789811186","https://openalex.org/W2802633978","https://openalex.org/W2809744928","https://openalex.org/W2810292802","https://openalex.org/W2848973885","https://openalex.org/W2887782657","https://openalex.org/W2893747136","https://openalex.org/W2899369559","https://openalex.org/W2899879087","https://openalex.org/W2900529838","https://openalex.org/W2904648439","https://openalex.org/W2905166565","https://openalex.org/W2905386532","https://openalex.org/W2908441554","https://openalex.org/W2911827809","https://openalex.org/W2919115771","https://openalex.org/W2921068663","https://openalex.org/W2931035581","https://openalex.org/W2939852233","https://openalex.org/W2942245950","https://openalex.org/W2942682738","https://openalex.org/W2946048316","https://openalex.org/W2946094116","https://openalex.org/W2948689530","https://openalex.org/W2949597887","https://openalex.org/W2956467153","https://openalex.org/W2958041981","https://openalex.org/W2963703618","https://openalex.org/W2964121744","https://openalex.org/W2972902574","https://openalex.org/W4232478844","https://openalex.org/W4248391971","https://openalex.org/W605727707"],"related_works":["https://openalex.org/W4390608645","https://openalex.org/W4255224757","https://openalex.org/W4247566972","https://openalex.org/W4233347783","https://openalex.org/W4206777497","https://openalex.org/W3090563135","https://openalex.org/W2960264696","https://openalex.org/W2910064364","https://openalex.org/W2497432351","https://openalex.org/W2152950565"],"abstract_inverted_index":{"With":[0],"the":[1,6,15,74,117,122,128,151,163,179,196,201,210],"manufacturing":[2,56],"industry":[3],"stepping":[4],"into":[5],"emerging":[7],"new":[8],"era":[9],"of":[10,17,35,44,125,178],"big":[11],"data":[12,18,37,189],"and":[13,22,52,95,104,174,195,208],"intelligence,":[14],"amount":[16,34],"collected":[19],"from":[20],"perception":[21],"monitoring":[23],"systems":[24],"with":[25,60,134,147,191],"multiple":[26,135],"smart":[27],"sensors":[28],"has":[29],"increased":[30],"tremendously.":[31],"Such":[32],"huge":[33],"multisensory":[36,107,126],"may":[38],"not":[39],"only":[40],"power":[41],"many":[42],"aspects":[43],"fault":[45,64,76,86,102,172,212],"diagnosis,":[46],"but":[47],"also":[48],"bring":[49],"great":[50],"opportunities":[51],"challenges":[53],"in":[54],"modern":[55],"industry.":[57],"In":[58],"addition,":[59],"respect":[61],"to":[62,161],"intelligent":[63,170],"diagnosis":[65,77,105,206],"for":[66,100,169],"machinery,":[67],"few":[68],"researches":[69],"have":[70],"been":[71],"focused":[72],"on":[73,90,184],"compound":[75,101,171,193,211],"under":[78],"big-data":[79],"circumstance.":[80],"Therefore,":[81],"a":[82,110,158],"novel,":[83],"intelligent,":[84],"compound,":[85],"decoupling":[87,103,111,173],"method":[88],"based":[89],"deep":[91,164],"capsule":[92],"network":[93],"(CN)":[94],"ensemble":[96,148,165],"learning":[97,149],"is":[98,114,182],"developed":[99],"using":[106],"data.":[108],"First,":[109],"CN":[112,166],"(DCN)":[113],"constructed":[115],"as":[116],"basic":[118],"model.":[119],"Second,":[120],"taking":[121],"full":[123],"advantage":[124],"data,":[127,137],"DCN":[129,143,153],"model":[130,168,181,203],"can":[131,139],"be":[132],"pretrained":[133,142,152],"sensor":[136],"which":[138],"obtain":[140,162],"various":[141],"models.":[144],"Finally,":[145],"combining":[146],"skill,":[150],"models":[154],"are":[155],"integrated":[156],"by":[157],"combination":[159],"strategy":[160],"(DECN)":[167],"diagnosis.":[175],"The":[176],"performance":[177],"DECN":[180,202],"validated":[183],"an":[185],"automobile":[186],"transmission":[187],"(AT)":[188],"set":[190],"two":[192],"faults,":[194],"experimental":[197],"results":[198],"illustrate":[199],"that":[200],"obtains":[204],"higher":[205],"accuracy":[207],"decouples":[209],"correctly.":[213]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W2991661665","counts_by_year":[{"year":2025,"cited_by_count":1},{"year":2024,"cited_by_count":12},{"year":2023,"cited_by_count":15},{"year":2022,"cited_by_count":25},{"year":2021,"cited_by_count":17},{"year":2020,"cited_by_count":9}],"updated_date":"2025-04-18T17:06:03.234628","created_date":"2019-12-13"}