{"id":"https://openalex.org/W4319866475","doi":"https://doi.org/10.1109/tii.2023.3240929","title":"Wasserstein Adversarial Learning for Identification of Power Quality Disturbances With Incomplete Data","display_name":"Wasserstein Adversarial Learning for Identification of Power Quality Disturbances With Incomplete Data","publication_year":2023,"publication_date":"2023-01-31","ids":{"openalex":"https://openalex.org/W4319866475","doi":"https://doi.org/10.1109/tii.2023.3240929"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/tii.2023.3240929","pdf_url":null,"source":{"id":"https://openalex.org/S184777250","display_name":"IEEE Transactions on Industrial Informatics","issn_l":"1551-3203","issn":["1551-3203","1941-0050"],"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":true,"is_core":true,"host_organization":"https://openalex.org/P4310319808","host_organization_name":"Institute of Electrical and Electronics Engineers","host_organization_lineage":["https://openalex.org/P4310319808"],"host_organization_lineage_names":["Institute of Electrical and Electronics Engineers"],"type":"journal"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"journal-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5011814034","display_name":"Guangxu Feng","orcid":null},"institutions":[{"id":"https://openalex.org/I6469544","display_name":"City University of Macau","ror":"https://ror.org/04gpd4q15","country_code":"MO","type":"education","lineage":["https://openalex.org/I6469544"]},{"id":"https://openalex.org/I204512498","display_name":"University of Macau","ror":"https://ror.org/01r4q9n85","country_code":"MO","type":"funder","lineage":["https://openalex.org/I204512498"]}],"countries":["MO"],"is_corresponding":false,"raw_author_name":"Guangxu Feng","raw_affiliation_strings":["State Key Laboratory of Internet of Things for Smart City and Department of Electrical and Computer Engineering, University of Macau, Macau, China"],"affiliations":[{"raw_affiliation_string":"State Key Laboratory of Internet of Things for Smart City and Department of Electrical and Computer Engineering, University of Macau, Macau, China","institution_ids":["https://openalex.org/I6469544","https://openalex.org/I204512498"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5111005265","display_name":"Keng\u2010Weng Lao","orcid":null},"institutions":[{"id":"https://openalex.org/I204512498","display_name":"University of Macau","ror":"https://ror.org/01r4q9n85","country_code":"MO","type":"funder","lineage":["https://openalex.org/I204512498"]},{"id":"https://openalex.org/I6469544","display_name":"City University of Macau","ror":"https://ror.org/04gpd4q15","country_code":"MO","type":"education","lineage":["https://openalex.org/I6469544"]}],"countries":["MO"],"is_corresponding":false,"raw_author_name":"Keng-Weng Lao","raw_affiliation_strings":["State Key Laboratory of Internet of Things for Smart City and Department of Electrical and Computer Engineering, University of Macau, Macau, China"],"affiliations":[{"raw_affiliation_string":"State Key Laboratory of Internet of Things for Smart City and Department of Electrical and Computer Engineering, University of Macau, Macau, China","institution_ids":["https://openalex.org/I204512498","https://openalex.org/I6469544"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":2,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":1.383,"has_fulltext":false,"cited_by_count":7,"citation_normalized_percentile":{"value":0.723004,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":91,"max":93},"biblio":{"volume":"19","issue":"10","first_page":"10401","last_page":"10411"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10573","display_name":"Power Quality and Harmonics","score":0.998,"subfield":{"id":"https://openalex.org/subfields/2208","display_name":"Electrical and Electronic Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10573","display_name":"Power Quality and Harmonics","score":0.998,"subfield":{"id":"https://openalex.org/subfields/2208","display_name":"Electrical and Electronic Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10220","display_name":"Machine Fault Diagnosis Techniques","score":0.9973,"subfield":{"id":"https://openalex.org/subfields/2207","display_name":"Control and Systems Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11343","display_name":"Power Transformer Diagnostics and Insulation","score":0.9952,"subfield":{"id":"https://openalex.org/subfields/2208","display_name":"Electrical and Electronic Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/imputation","display_name":"Imputation (statistics)","score":0.7655723}],"concepts":[{"id":"https://openalex.org/C58041806","wikidata":"https://www.wikidata.org/wiki/Q1660484","display_name":"Imputation (statistics)","level":3,"score":0.7655723},{"id":"https://openalex.org/C9357733","wikidata":"https://www.wikidata.org/wiki/Q6878417","display_name":"Missing data","level":2,"score":0.6084677},{"id":"https://openalex.org/C37736160","wikidata":"https://www.wikidata.org/wiki/Q1801315","display_name":"Adversarial system","level":2,"score":0.58636117},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.56216264},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.55565494},{"id":"https://openalex.org/C112972136","wikidata":"https://www.wikidata.org/wiki/Q7595718","display_name":"Stability (learning theory)","level":2,"score":0.4871211},{"id":"https://openalex.org/C2777303404","wikidata":"https://www.wikidata.org/wiki/Q759757","display_name":"Convergence (economics)","level":2,"score":0.46204302},{"id":"https://openalex.org/C108583219","wikidata":"https://www.wikidata.org/wiki/Q197536","display_name":"Deep learning","level":2,"score":0.42054915},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.41260597},{"id":"https://openalex.org/C36503486","wikidata":"https://www.wikidata.org/wiki/Q11235244","display_name":"Domain (mathematical analysis)","level":2,"score":0.41042602},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.397018},{"id":"https://openalex.org/C124101348","wikidata":"https://www.wikidata.org/wiki/Q172491","display_name":"Data mining","level":1,"score":0.37290877},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.22699443},{"id":"https://openalex.org/C134306372","wikidata":"https://www.wikidata.org/wiki/Q7754","display_name":"Mathematical analysis","level":1,"score":0.0},{"id":"https://openalex.org/C162324750","wikidata":"https://www.wikidata.org/wiki/Q8134","display_name":"Economics","level":0,"score":0.0},{"id":"https://openalex.org/C50522688","wikidata":"https://www.wikidata.org/wiki/Q189833","display_name":"Economic growth","level":1,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/tii.2023.3240929","pdf_url":null,"source":{"id":"https://openalex.org/S184777250","display_name":"IEEE Transactions on Industrial Informatics","issn_l":"1551-3203","issn":["1551-3203","1941-0050"],"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":true,"is_core":true,"host_organization":"https://openalex.org/P4310319808","host_organization_name":"Institute of Electrical and Electronics Engineers","host_organization_lineage":["https://openalex.org/P4310319808"],"host_organization_lineage_names":["Institute of Electrical and Electronics Engineers"],"type":"journal"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[],"grants":[{"funder":"https://openalex.org/F4320321655","funder_display_name":"Science and Technology Development Fund","award_id":null}],"datasets":[],"versions":[],"referenced_works_count":31,"referenced_works":["https://openalex.org/W1882958252","https://openalex.org/W2114539957","https://openalex.org/W2159860553","https://openalex.org/W2187089797","https://openalex.org/W2330605115","https://openalex.org/W2739748921","https://openalex.org/W2770645414","https://openalex.org/W2803403013","https://openalex.org/W2890548886","https://openalex.org/W2890686416","https://openalex.org/W2901358399","https://openalex.org/W2913132632","https://openalex.org/W2948852829","https://openalex.org/W2953345983","https://openalex.org/W2963275094","https://openalex.org/W2964288524","https://openalex.org/W2990403609","https://openalex.org/W2995179471","https://openalex.org/W2999957694","https://openalex.org/W3008316529","https://openalex.org/W3038129359","https://openalex.org/W3043579284","https://openalex.org/W3157814197","https://openalex.org/W3181227279","https://openalex.org/W3202429452","https://openalex.org/W3213273528","https://openalex.org/W4226412754","https://openalex.org/W4233762729","https://openalex.org/W4295521014","https://openalex.org/W4297796805","https://openalex.org/W4320013936"],"related_works":["https://openalex.org/W4211215373","https://openalex.org/W3179858851","https://openalex.org/W3144172081","https://openalex.org/W3123177881","https://openalex.org/W3028371478","https://openalex.org/W2581984549","https://openalex.org/W2181530120","https://openalex.org/W2081476516","https://openalex.org/W2024529227","https://openalex.org/W1574575415"],"abstract_inverted_index":{"PQDs":[0,35,69,131,141],"have":[1],"adverse":[2],"impacts":[3],"on":[4,67],"the":[5,11,37,44,49,74,85,90,115,120,150,171],"safe":[6],"operation":[7],"and":[8,36,81,95,127,153,163,179],"reliability":[9],"of":[10,19,26,33,61,79,93,123,138],"modern":[12],"integrated":[13],"power":[14],"system":[15],"so":[16],"it":[17],"is":[18,52,65],"great":[20],"necessity":[21],"to":[22,99,132],"identify":[23],"them.":[24],"Existence":[25],"missing":[27,101],"measurement":[28],"data":[29,41,72,91],"hinders":[30],"accurate":[31],"identification":[32],"potential":[34],"inevitable":[38],"discrepancy":[39,118],"after":[40],"recovery":[42],"vitiates":[43],"current":[45],"detection":[46],"methods.":[47],"Besides,":[48],"related":[50],"research":[51],"lacked.":[53],"In":[54],"this":[55,104],"article,":[56],"a":[57],"novel":[58],"unified":[59],"framework":[60],"Wasserstein":[62,87,116,168],"adversarial":[63],"learning":[64,174],"proposed":[66,151,172],"identifying":[68],"with":[70,159,176],"incomplete":[71],"for":[73],"first":[75],"time.":[76],"It":[77],"consists":[78],"WAI":[80,83,152],"WADA.":[82],"minimizes":[84],"improved":[86],"distance":[88],"between":[89,119],"distributions":[92,122],"observed":[94],"generated":[96],"PQD":[97,106],"parts":[98],"impute":[100],"values.":[102],"During":[103],"process,":[105],"characteristics":[107],"can":[108,142],"be":[109,143],"well":[110],"recovered.":[111],"Then,":[112],"WADA":[113,154],"leverages":[114],"domain":[117],"feature":[121],"source":[124],"labeled":[125],"complete":[126],"target":[128,139],"unlabeled":[129],"imputed":[130,140],"capture":[133],"domain-invariant":[134],"features.":[135],"Thus,":[136],"labels":[137],"predicted":[144],"accurately.":[145],"Experimental":[146],"verification":[147],"demonstrates":[148],"that":[149],"outperform":[155],"other":[156],"typical":[157],"methods":[158],"better":[160],"imputation":[161],"results":[162],"higher":[164],"classification":[165],"accuracy.":[166],"Constrained":[167],"loss":[169],"empowers":[170],"deep":[173],"models":[175],"excellent":[177],"convergence":[178],"gradient":[180],"stability.":[181]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4319866475","counts_by_year":[{"year":2024,"cited_by_count":3},{"year":2023,"cited_by_count":4}],"updated_date":"2025-04-22T20:43:56.393261","created_date":"2023-02-11"}