{"id":"https://openalex.org/W3211897638","doi":"https://doi.org/10.1109/tii.2021.3120686","title":"A Self-Adaptive Temporal-Spatial Self-Training Algorithm for Semisupervised Fault Diagnosis of Industrial Processes","display_name":"A Self-Adaptive Temporal-Spatial Self-Training Algorithm for Semisupervised Fault Diagnosis of Industrial Processes","publication_year":2021,"publication_date":"2021-10-20","ids":{"openalex":"https://openalex.org/W3211897638","doi":"https://doi.org/10.1109/tii.2021.3120686","mag":"3211897638"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/tii.2021.3120686","pdf_url":null,"source":{"id":"https://openalex.org/S184777250","display_name":"IEEE Transactions on Industrial Informatics","issn_l":"1551-3203","issn":["1551-3203","1941-0050"],"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":true,"is_core":true,"host_organization":"https://openalex.org/P4310319808","host_organization_name":"Institute of Electrical and Electronics Engineers","host_organization_lineage":["https://openalex.org/P4310319808"],"host_organization_lineage_names":["Institute of Electrical and Electronics Engineers"],"type":"journal"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"journal-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5040669113","display_name":"Shaodong Zheng","orcid":"https://orcid.org/0000-0002-1929-6679"},"institutions":[{"id":"https://openalex.org/I4210156066","display_name":"State Key Laboratory of Chemical Engineering","ror":"https://ror.org/05803vc71","country_code":"CN","type":"funder","lineage":["https://openalex.org/I4210156066"]},{"id":"https://openalex.org/I99065089","display_name":"Tsinghua University","ror":"https://ror.org/03cve4549","country_code":"CN","type":"funder","lineage":["https://openalex.org/I99065089"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Shaodong Zheng","raw_affiliation_strings":["State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing, China"],"affiliations":[{"raw_affiliation_string":"State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing, China","institution_ids":["https://openalex.org/I4210156066","https://openalex.org/I99065089"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5100398395","display_name":"Jinsong Zhao","orcid":"https://orcid.org/0000-0003-0572-8431"},"institutions":[{"id":"https://openalex.org/I4210156066","display_name":"State Key Laboratory of Chemical Engineering","ror":"https://ror.org/05803vc71","country_code":"CN","type":"funder","lineage":["https://openalex.org/I4210156066"]},{"id":"https://openalex.org/I99065089","display_name":"Tsinghua University","ror":"https://ror.org/03cve4549","country_code":"CN","type":"funder","lineage":["https://openalex.org/I99065089"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Jinsong Zhao","raw_affiliation_strings":["Beijing Key Laboratory of Industrial Big Data System and Application, Tsinghua University, Beijing, China","State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing, China"],"affiliations":[{"raw_affiliation_string":"State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing, China","institution_ids":["https://openalex.org/I4210156066","https://openalex.org/I99065089"]},{"raw_affiliation_string":"Beijing Key Laboratory of Industrial Big Data System and Application, Tsinghua University, Beijing, China","institution_ids":["https://openalex.org/I99065089"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":2,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":3.264,"has_fulltext":false,"cited_by_count":27,"citation_normalized_percentile":{"value":0.642968,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":95,"max":96},"biblio":{"volume":"18","issue":"10","first_page":"6700","last_page":"6711"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10876","display_name":"Fault Detection and Control Systems","score":0.9999,"subfield":{"id":"https://openalex.org/subfields/2207","display_name":"Control and Systems Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10876","display_name":"Fault Detection and Control Systems","score":0.9999,"subfield":{"id":"https://openalex.org/subfields/2207","display_name":"Control and Systems Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T12282","display_name":"Mineral Processing and Grinding","score":0.9925,"subfield":{"id":"https://openalex.org/subfields/2210","display_name":"Mechanical Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T14470","display_name":"Advanced Data Processing Techniques","score":0.9752,"subfield":{"id":"https://openalex.org/subfields/2207","display_name":"Control and Systems Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/benchmark","display_name":"Benchmark (surveying)","score":0.64829284},{"id":"https://openalex.org/keywords/hyperparameter","display_name":"Hyperparameter","score":0.6393759}],"concepts":[{"id":"https://openalex.org/C98045186","wikidata":"https://www.wikidata.org/wiki/Q205663","display_name":"Process (computing)","level":2,"score":0.6757272},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.66502273},{"id":"https://openalex.org/C185798385","wikidata":"https://www.wikidata.org/wiki/Q1161707","display_name":"Benchmark (surveying)","level":2,"score":0.64829284},{"id":"https://openalex.org/C8642999","wikidata":"https://www.wikidata.org/wiki/Q4171168","display_name":"Hyperparameter","level":2,"score":0.6393759},{"id":"https://openalex.org/C175551986","wikidata":"https://www.wikidata.org/wiki/Q47089","display_name":"Fault (geology)","level":2,"score":0.59060186},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.5659532},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.5290051},{"id":"https://openalex.org/C124101348","wikidata":"https://www.wikidata.org/wiki/Q172491","display_name":"Data mining","level":1,"score":0.47457623},{"id":"https://openalex.org/C2780009758","wikidata":"https://www.wikidata.org/wiki/Q6804172","display_name":"Measure (data warehouse)","level":2,"score":0.4417485},{"id":"https://openalex.org/C152745839","wikidata":"https://www.wikidata.org/wiki/Q5438153","display_name":"Fault detection and isolation","level":3,"score":0.4411712},{"id":"https://openalex.org/C11413529","wikidata":"https://www.wikidata.org/wiki/Q8366","display_name":"Algorithm","level":1,"score":0.4373886},{"id":"https://openalex.org/C13280743","wikidata":"https://www.wikidata.org/wiki/Q131089","display_name":"Geodesy","level":1,"score":0.0},{"id":"https://openalex.org/C165205528","wikidata":"https://www.wikidata.org/wiki/Q83371","display_name":"Seismology","level":1,"score":0.0},{"id":"https://openalex.org/C127313418","wikidata":"https://www.wikidata.org/wiki/Q1069","display_name":"Geology","level":0,"score":0.0},{"id":"https://openalex.org/C172707124","wikidata":"https://www.wikidata.org/wiki/Q423488","display_name":"Actuator","level":2,"score":0.0},{"id":"https://openalex.org/C205649164","wikidata":"https://www.wikidata.org/wiki/Q1071","display_name":"Geography","level":0,"score":0.0},{"id":"https://openalex.org/C111919701","wikidata":"https://www.wikidata.org/wiki/Q9135","display_name":"Operating system","level":1,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/tii.2021.3120686","pdf_url":null,"source":{"id":"https://openalex.org/S184777250","display_name":"IEEE Transactions on Industrial Informatics","issn_l":"1551-3203","issn":["1551-3203","1941-0050"],"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":true,"is_core":true,"host_organization":"https://openalex.org/P4310319808","host_organization_name":"Institute of Electrical and Electronics Engineers","host_organization_lineage":["https://openalex.org/P4310319808"],"host_organization_lineage_names":["Institute of Electrical and Electronics Engineers"],"type":"journal"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[],"grants":[{"funder":"https://openalex.org/F4320321001","funder_display_name":"National Natural Science Foundation of China","award_id":"21878171"}],"datasets":[],"versions":[],"referenced_works_count":30,"referenced_works":["https://openalex.org/W1437335841","https://openalex.org/W1493009343","https://openalex.org/W1966863755","https://openalex.org/W1984672166","https://openalex.org/W2004186751","https://openalex.org/W2019288156","https://openalex.org/W2048679005","https://openalex.org/W2065181790","https://openalex.org/W2078380024","https://openalex.org/W2101210369","https://openalex.org/W2106401878","https://openalex.org/W2106411961","https://openalex.org/W2114718442","https://openalex.org/W2133556223","https://openalex.org/W2143288231","https://openalex.org/W2553166207","https://openalex.org/W2619296796","https://openalex.org/W2726291047","https://openalex.org/W2744001352","https://openalex.org/W2782270562","https://openalex.org/W2796942168","https://openalex.org/W2896365146","https://openalex.org/W2919303361","https://openalex.org/W2973694455","https://openalex.org/W2977117446","https://openalex.org/W3019042437","https://openalex.org/W3028404598","https://openalex.org/W3120299959","https://openalex.org/W3138399413","https://openalex.org/W4211116959"],"related_works":["https://openalex.org/W4390421286","https://openalex.org/W4389724018","https://openalex.org/W4360995913","https://openalex.org/W4318719684","https://openalex.org/W4318559728","https://openalex.org/W4312193868","https://openalex.org/W4308165509","https://openalex.org/W4280563792","https://openalex.org/W2775233965","https://openalex.org/W2140186469"],"abstract_inverted_index":{"Investigating":[0],"process":[1,33,86,103,162],"monitoring":[2,34],"techniques":[3],"is":[4,28,120,125,149],"required":[5],"to":[6,23,41,48,56,97,133,143,152,166,179],"reduce":[7],"the":[8,25,140,168,172],"loss":[9],"of":[10,78,130],"property":[11],"and":[12,136,171],"life":[13],"caused":[14],"by":[15],"industrial":[16,85,102,144],"processes":[17],"accidents.":[18],"Fault":[19],"diagnosis,":[20],"which":[21,63,138],"attempts":[22],"determine":[24],"fault":[26,51,87],"type,":[27],"a":[29,112,116],"vital":[30],"step":[31],"in":[32,58,84,109],"because":[35,93],"it":[36],"can":[37,68],"help":[38],"operators":[39],"respond":[40],"abnormal":[42],"situations":[43],"appropriately.":[44],"Adequate":[45],"data":[46,131,163],"labels":[47],"train":[49],"supervised":[50],"diagnosis":[52,88],"models":[53],"are":[54,64,74,95],"difficult":[55],"acquire":[57],"practice;":[59],"however,":[60],"semisupervised":[61,79,181],"methods,":[62,80],"attracting":[65],"increasing":[66],"attention,":[67],"use":[69],"unlabeled":[70],"data.":[71,104],"Self-labeled":[72],"algorithms":[73],"an":[75],"effective":[76],"paradigm":[77],"but":[81],"their":[82],"applications":[83],"do":[89],"not":[90],"meet":[91],"expectations,":[92],"they":[94],"prone":[96],"performance":[98],"deterioration":[99],"when":[100],"handling":[101],"To":[105],"address":[106],"this":[107,110],"issue,":[108],"article,":[111],"self-training":[113],"algorithm":[114,141,148],"with":[115,127],"modified":[117],"confidence":[118,123],"measure":[119,124],"proposed.":[121],"The":[122,146,158],"temporal-spatial":[126],"temporal":[128],"identities":[129],"introduced":[132],"its":[134,176],"definition":[135],"calculation,":[137],"makes":[139],"adaptable":[142],"processes.":[145,157],"proposed":[147,169],"also":[150],"self-adaptive":[151],"avoid":[153],"time-consuming":[154],"hyperparameter":[155],"tuning":[156],"benchmark":[159],"Tennessee":[160],"Eastman":[161],"were":[164],"used":[165],"evaluate":[167],"algorithm,":[170],"experiment":[173],"results":[174],"demonstrate":[175],"superiority":[177],"compared":[178],"competing":[180],"methods.":[182]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W3211897638","counts_by_year":[{"year":2024,"cited_by_count":8},{"year":2023,"cited_by_count":13},{"year":2022,"cited_by_count":6}],"updated_date":"2025-02-23T23:09:41.125588","created_date":"2021-11-22"}