{"id":"https://openalex.org/W4313229425","doi":"https://doi.org/10.1109/tgrs.2022.3232784","title":"A Bayesian Meta-Learning-Based Method for Few-Shot Hyperspectral Image Classification","display_name":"A Bayesian Meta-Learning-Based Method for Few-Shot Hyperspectral Image Classification","publication_year":2022,"publication_date":"2022-12-28","ids":{"openalex":"https://openalex.org/W4313229425","doi":"https://doi.org/10.1109/tgrs.2022.3232784"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/tgrs.2022.3232784","pdf_url":null,"source":{"id":"https://openalex.org/S111326731","display_name":"IEEE Transactions on Geoscience and Remote Sensing","issn_l":"0196-2892","issn":["0196-2892","1558-0644"],"is_oa":false,"is_in_doaj":false,"is_core":true,"host_organization":"https://openalex.org/P4310319808","host_organization_name":"Institute of Electrical and Electronics Engineers","host_organization_lineage":["https://openalex.org/P4310319808"],"host_organization_lineage_names":["Institute of Electrical and Electronics Engineers"],"type":"journal"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"journal-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5100757047","display_name":"Jing Zhang","orcid":"https://orcid.org/0000-0002-9145-6905"},"institutions":[{"id":"https://openalex.org/I82880672","display_name":"Beihang University","ror":"https://ror.org/00wk2mp56","country_code":"CN","type":"education","lineage":["https://openalex.org/I82880672"]},{"id":"https://openalex.org/I4210100255","display_name":"Beijing Academy of Artificial Intelligence","ror":"https://ror.org/016a74861","country_code":"CN","type":"other","lineage":["https://openalex.org/I4210100255"]},{"id":"https://openalex.org/I4391012619","display_name":"Shanghai Artificial Intelligence Laboratory","ror":"https://ror.org/03wkvpx79","country_code":null,"type":"facility","lineage":["https://openalex.org/I4391012619"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Jing Zhang","raw_affiliation_strings":["Image Processing Center, School of Astronautics, the Beijing Key Laboratory of Digital Media, and the State Key Laboratory of Virtual Reality Technology and Systems, Beihang University, Beijing, China","Shanghai Artificial Intelligence Laboratory, Shanghai, China"],"affiliations":[{"raw_affiliation_string":"Image Processing Center, School of Astronautics, the Beijing Key Laboratory of Digital Media, and the State Key Laboratory of Virtual Reality Technology and Systems, Beihang University, Beijing, China","institution_ids":["https://openalex.org/I82880672"]},{"raw_affiliation_string":"Shanghai Artificial Intelligence Laboratory, Shanghai, China","institution_ids":["https://openalex.org/I4210100255","https://openalex.org/I4391012619"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5005053576","display_name":"Liqin Liu","orcid":"https://orcid.org/0000-0001-7158-6772"},"institutions":[{"id":"https://openalex.org/I4210100255","display_name":"Beijing Academy of Artificial Intelligence","ror":"https://ror.org/016a74861","country_code":"CN","type":"other","lineage":["https://openalex.org/I4210100255"]},{"id":"https://openalex.org/I82880672","display_name":"Beihang University","ror":"https://ror.org/00wk2mp56","country_code":"CN","type":"education","lineage":["https://openalex.org/I82880672"]},{"id":"https://openalex.org/I4391012619","display_name":"Shanghai Artificial Intelligence Laboratory","ror":"https://ror.org/03wkvpx79","country_code":null,"type":"facility","lineage":["https://openalex.org/I4391012619"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Liqin Liu","raw_affiliation_strings":["Image Processing Center, School of Astronautics, the Beijing Key Laboratory of Digital Media, and the State Key Laboratory of Virtual Reality Technology and Systems, Beihang University, Beijing, China","Shanghai Artificial Intelligence Laboratory, Shanghai, China"],"affiliations":[{"raw_affiliation_string":"Shanghai Artificial Intelligence Laboratory, Shanghai, China","institution_ids":["https://openalex.org/I4210100255","https://openalex.org/I4391012619"]},{"raw_affiliation_string":"Image Processing Center, School of Astronautics, the Beijing Key Laboratory of Digital Media, and the State Key Laboratory of Virtual Reality Technology and Systems, Beihang University, Beijing, China","institution_ids":["https://openalex.org/I82880672"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5078304976","display_name":"Rui Zhao","orcid":"https://orcid.org/0000-0003-4271-0206"},"institutions":[{"id":"https://openalex.org/I165932596","display_name":"National University of Singapore","ror":"https://ror.org/01tgyzw49","country_code":"SG","type":"education","lineage":["https://openalex.org/I165932596"]}],"countries":["SG"],"is_corresponding":false,"raw_author_name":"Rui Zhao","raw_affiliation_strings":["Department of Electrical and Computer Engineering, National University of Singapore, Queenstown, Singapore"],"affiliations":[{"raw_affiliation_string":"Department of Electrical and Computer Engineering, National University of Singapore, Queenstown, Singapore","institution_ids":["https://openalex.org/I165932596"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5058849690","display_name":"Zhenwei Shi","orcid":"https://orcid.org/0000-0002-4772-3172"},"institutions":[{"id":"https://openalex.org/I82880672","display_name":"Beihang University","ror":"https://ror.org/00wk2mp56","country_code":"CN","type":"education","lineage":["https://openalex.org/I82880672"]},{"id":"https://openalex.org/I4210100255","display_name":"Beijing Academy of Artificial Intelligence","ror":"https://ror.org/016a74861","country_code":"CN","type":"other","lineage":["https://openalex.org/I4210100255"]},{"id":"https://openalex.org/I4391012619","display_name":"Shanghai Artificial Intelligence Laboratory","ror":"https://ror.org/03wkvpx79","country_code":null,"type":"facility","lineage":["https://openalex.org/I4391012619"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Zhenwei Shi","raw_affiliation_strings":["Image Processing Center, School of Astronautics, the Beijing Key Laboratory of Digital Media, and the State Key Laboratory of Virtual Reality Technology and Systems, Beihang University, Beijing, China","Shanghai Artificial Intelligence Laboratory, Shanghai, China"],"affiliations":[{"raw_affiliation_string":"Image Processing Center, School of Astronautics, the Beijing Key Laboratory of Digital Media, and the State Key Laboratory of Virtual Reality Technology and Systems, Beihang University, Beijing, China","institution_ids":["https://openalex.org/I82880672"]},{"raw_affiliation_string":"Shanghai Artificial Intelligence Laboratory, Shanghai, China","institution_ids":["https://openalex.org/I4210100255","https://openalex.org/I4391012619"]}]}],"institution_assertions":[],"countries_distinct_count":2,"institutions_distinct_count":4,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":2.927,"has_fulltext":false,"cited_by_count":18,"citation_normalized_percentile":{"value":0.709261,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":95,"max":96},"biblio":{"volume":"61","issue":null,"first_page":"1","last_page":"13"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10689","display_name":"Remote-Sensing Image Classification","score":0.9999,"subfield":{"id":"https://openalex.org/subfields/2214","display_name":"Media Technology"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10689","display_name":"Remote-Sensing Image Classification","score":0.9999,"subfield":{"id":"https://openalex.org/subfields/2214","display_name":"Media Technology"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11307","display_name":"Domain Adaptation and Few-Shot Learning","score":0.9912,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10627","display_name":"Advanced Image and Video Retrieval Techniques","score":0.9853,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/contextual-image-classification","display_name":"Contextual image classification","score":0.44663283}],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.7204614},{"id":"https://openalex.org/C159078339","wikidata":"https://www.wikidata.org/wiki/Q959005","display_name":"Hyperspectral imaging","level":2,"score":0.7064571},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.68182176},{"id":"https://openalex.org/C57830394","wikidata":"https://www.wikidata.org/wiki/Q278079","display_name":"Posterior probability","level":3,"score":0.64628077},{"id":"https://openalex.org/C2776214188","wikidata":"https://www.wikidata.org/wiki/Q408386","display_name":"Inference","level":2,"score":0.6136185},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.5440428},{"id":"https://openalex.org/C107673813","wikidata":"https://www.wikidata.org/wiki/Q812534","display_name":"Bayesian probability","level":2,"score":0.5098947},{"id":"https://openalex.org/C49937458","wikidata":"https://www.wikidata.org/wiki/Q2599292","display_name":"Probabilistic logic","level":2,"score":0.50578},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.4911003},{"id":"https://openalex.org/C160234255","wikidata":"https://www.wikidata.org/wiki/Q812535","display_name":"Bayesian inference","level":3,"score":0.46661037},{"id":"https://openalex.org/C75294576","wikidata":"https://www.wikidata.org/wiki/Q5165192","display_name":"Contextual image classification","level":3,"score":0.44663283},{"id":"https://openalex.org/C115961682","wikidata":"https://www.wikidata.org/wiki/Q860623","display_name":"Image (mathematics)","level":2,"score":0.34418553}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/tgrs.2022.3232784","pdf_url":null,"source":{"id":"https://openalex.org/S111326731","display_name":"IEEE Transactions on Geoscience and Remote Sensing","issn_l":"0196-2892","issn":["0196-2892","1558-0644"],"is_oa":false,"is_in_doaj":false,"is_core":true,"host_organization":"https://openalex.org/P4310319808","host_organization_name":"Institute of Electrical and Electronics Engineers","host_organization_lineage":["https://openalex.org/P4310319808"],"host_organization_lineage_names":["Institute of Electrical and Electronics Engineers"],"type":"journal"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[],"grants":[{"funder":"https://openalex.org/F4320321001","funder_display_name":"National Natural Science Foundation of China","award_id":"62125102"},{"funder":"https://openalex.org/F4320335777","funder_display_name":"National Key Research and Development Program of China","award_id":null},{"funder":"https://openalex.org/F4320335787","funder_display_name":"Fundamental Research Funds for the Central Universities","award_id":null}],"datasets":[],"versions":[],"referenced_works_count":51,"referenced_works":["https://openalex.org/W1247035941","https://openalex.org/W1516111018","https://openalex.org/W2029316659","https://openalex.org/W2030476695","https://openalex.org/W2115733720","https://openalex.org/W2123713131","https://openalex.org/W2126119062","https://openalex.org/W2138309709","https://openalex.org/W2144151128","https://openalex.org/W2183457690","https://openalex.org/W2225156818","https://openalex.org/W2344245028","https://openalex.org/W2392836493","https://openalex.org/W2462239623","https://openalex.org/W2527650001","https://openalex.org/W2546942002","https://openalex.org/W2572303978","https://openalex.org/W2587790406","https://openalex.org/W2608092940","https://openalex.org/W2768309288","https://openalex.org/W2777427437","https://openalex.org/W2889192935","https://openalex.org/W2889456682","https://openalex.org/W2898204262","https://openalex.org/W2899138465","https://openalex.org/W2907943085","https://openalex.org/W2915658286","https://openalex.org/W2941387379","https://openalex.org/W2945225401","https://openalex.org/W2964105864","https://openalex.org/W2967667754","https://openalex.org/W2971262044","https://openalex.org/W2982826170","https://openalex.org/W2998247074","https://openalex.org/W3000446647","https://openalex.org/W3000554425","https://openalex.org/W3004925702","https://openalex.org/W3005379812","https://openalex.org/W3017352050","https://openalex.org/W3097853396","https://openalex.org/W3100958491","https://openalex.org/W3105005050","https://openalex.org/W3132867842","https://openalex.org/W3205269914","https://openalex.org/W4205694852","https://openalex.org/W4205932092","https://openalex.org/W4210927230","https://openalex.org/W4229368019","https://openalex.org/W4283760989","https://openalex.org/W4288054357","https://openalex.org/W4311415873"],"related_works":["https://openalex.org/W856257623","https://openalex.org/W3049691116","https://openalex.org/W2505726097","https://openalex.org/W2407375987","https://openalex.org/W2131935101","https://openalex.org/W2106867672","https://openalex.org/W2060045818","https://openalex.org/W2040227828","https://openalex.org/W2032094637","https://openalex.org/W2010643158"],"abstract_inverted_index":{"Few-shot":[0],"learning":[1,27],"provides":[2],"a":[3,68,73,78,87,148],"new":[4],"way":[5],"to":[6,103,183],"solve":[7],"the":[8,43,60,111,118,121,124,135,145,153,174,187],"problem":[9],"of":[10,81,110,127,134,155,176,192],"insufficient":[11],"training":[12,24,52],"samples":[13,25,137,157],"in":[14,46,120],"hyperspectral":[15,61],"classification.":[16],"It":[17],"can":[18,158],"implement":[19],"reliable":[20],"classification":[21,64],"under":[22],"several":[23],"by":[26,116],"meta-knowledge":[28],"from":[29,42,72,144],"similar":[30],"tasks.":[31],"However,":[32],"most":[33],"existing":[34],"works":[35],"perform":[36],"frequency":[37],"statistics,":[38],"which":[39],"may":[40],"suffer":[41],"prevalent":[44],"uncertainty":[45],"point":[47],"estimates":[48,99],"(PEs)":[49],"with":[50,140],"limited":[51],"samples.":[53,131],"To":[54],"overcome":[55],"this":[56],"problem,":[57],"we":[58],"reconsider":[59],"image":[62],"few-shot":[63],"(HSI-FSC)":[65],"task":[66],"as":[67,93],"hierarchical":[69],"probabilistic":[70,83],"inference":[71,166],"Bayesian":[74,164],"view":[75],"and":[76,96,129],"provide":[77],"careful":[79],"process":[80],"meta-learning":[82],"inference.":[84],"We":[85],"introduce":[86],"prototype":[88,112,141],"vector":[89],"for":[90,101],"each":[91],"class":[92],"latent":[94],"variables":[95],"adopt":[97],"distribution":[98,126,151],"(DEs)":[100],"them":[102],"obtain":[104],"their":[105],"posterior":[106,109,149],"distribution.":[107],"The":[108,132],"vectors":[113,142],"is":[114],"maximized":[115],"updating":[117],"parameters":[119],"model":[122],"via":[123,161],"prior":[125],"HSI":[128],"labeled":[130,185],"features":[133],"query":[136,156],"are":[138],"matched":[139],"drawn":[143],"posterior;":[146],"thus,":[147],"predictive":[150],"over":[152],"labels":[154],"be":[159],"inferred":[160],"an":[162],"amortized":[163],"variational":[165],"approach.":[167],"Experimental":[168],"results":[169],"on":[170],"four":[171],"datasets":[172],"demonstrate":[173],"effectiveness":[175],"our":[177],"method.":[178],"Especially":[179],"given":[180],"only":[181],"three":[182],"five":[184],"samples,":[186],"method":[188],"achieves":[189],"noticeable":[190],"upgrades":[191],"overall":[193],"accuracy":[194],"(OA)":[195],"against":[196],"competitive":[197],"methods.":[198]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4313229425","counts_by_year":[{"year":2024,"cited_by_count":9},{"year":2023,"cited_by_count":8}],"updated_date":"2024-12-15T10:17:09.912416","created_date":"2023-01-06"}