{"id":"https://openalex.org/W2614326984","doi":"https://doi.org/10.1109/tgrs.2017.2698503","title":"Learning and Transferring Deep Joint Spectral\u2013Spatial Features for Hyperspectral Classification","display_name":"Learning and Transferring Deep Joint Spectral\u2013Spatial Features for Hyperspectral Classification","publication_year":2017,"publication_date":"2017-05-16","ids":{"openalex":"https://openalex.org/W2614326984","doi":"https://doi.org/10.1109/tgrs.2017.2698503","mag":"2614326984"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/tgrs.2017.2698503","pdf_url":null,"source":{"id":"https://openalex.org/S111326731","display_name":"IEEE Transactions on Geoscience and Remote Sensing","issn_l":"0196-2892","issn":["0196-2892","1558-0644"],"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":true,"is_core":true,"host_organization":"https://openalex.org/P4310319808","host_organization_name":"Institute of Electrical and Electronics Engineers","host_organization_lineage":["https://openalex.org/P4310319808"],"host_organization_lineage_names":["Institute of Electrical and Electronics Engineers"],"type":"journal"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"journal-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5024727500","display_name":"Jingxiang Yang","orcid":"https://orcid.org/0000-0002-1234-0614"},"institutions":[{"id":"https://openalex.org/I17145004","display_name":"Northwestern Polytechnical University","ror":"https://ror.org/01y0j0j86","country_code":"CN","type":"funder","lineage":["https://openalex.org/I17145004"]},{"id":"https://openalex.org/I13469542","display_name":"Vrije Universiteit Brussel","ror":"https://ror.org/006e5kg04","country_code":"BE","type":"funder","lineage":["https://openalex.org/I13469542"]}],"countries":["BE","CN"],"is_corresponding":false,"raw_author_name":"Jingxiang Yang","raw_affiliation_strings":["Department of Electronics and Informatics, Vrije Universiteit Brussel, Brussel, Belgium","Key Laboratory of Information Fusion Technology (Ministry of Education of China), School of Automation, Northwestern Polytechnical University, Xi'an, China"],"affiliations":[{"raw_affiliation_string":"Key Laboratory of Information Fusion Technology (Ministry of Education of China), School of Automation, Northwestern Polytechnical University, Xi'an, China","institution_ids":["https://openalex.org/I17145004"]},{"raw_affiliation_string":"Department of Electronics and Informatics, Vrije Universiteit Brussel, Brussel, Belgium","institution_ids":["https://openalex.org/I13469542"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5073503029","display_name":"Yongqiang Zhao","orcid":"https://orcid.org/0000-0002-6974-7327"},"institutions":[{"id":"https://openalex.org/I17145004","display_name":"Northwestern Polytechnical University","ror":"https://ror.org/01y0j0j86","country_code":"CN","type":"funder","lineage":["https://openalex.org/I17145004"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Yong-Qiang Zhao","raw_affiliation_strings":["Key Laboratory of Information Fusion Technology (Ministry of Education of China), School of Automation, Northwestern Polytechnical University, Xi'an, China"],"affiliations":[{"raw_affiliation_string":"Key Laboratory of Information Fusion Technology (Ministry of Education of China), School of Automation, Northwestern Polytechnical University, Xi'an, China","institution_ids":["https://openalex.org/I17145004"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5047379149","display_name":"Jonathan Cheung-Wai Chan","orcid":"https://orcid.org/0000-0002-3741-1124"},"institutions":[{"id":"https://openalex.org/I13469542","display_name":"Vrije Universiteit Brussel","ror":"https://ror.org/006e5kg04","country_code":"BE","type":"funder","lineage":["https://openalex.org/I13469542"]}],"countries":["BE"],"is_corresponding":false,"raw_author_name":"Jonathan Cheung-Wai Chan","raw_affiliation_strings":["Department of Electronics and Informatics, Vrije Universiteit Brussel, Brussel, Belgium"],"affiliations":[{"raw_affiliation_string":"Department of Electronics and Informatics, Vrije Universiteit Brussel, Brussel, Belgium","institution_ids":["https://openalex.org/I13469542"]}]}],"institution_assertions":[],"countries_distinct_count":2,"institutions_distinct_count":2,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":31.57,"has_fulltext":true,"fulltext_origin":"ngrams","cited_by_count":411,"citation_normalized_percentile":{"value":0.999837,"is_in_top_1_percent":true,"is_in_top_10_percent":true},"cited_by_percentile_year":{"min":99,"max":100},"biblio":{"volume":"55","issue":"8","first_page":"4729","last_page":"4742"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10689","display_name":"Remote-Sensing Image Classification","score":0.9999,"subfield":{"id":"https://openalex.org/subfields/2214","display_name":"Media Technology"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10689","display_name":"Remote-Sensing Image Classification","score":0.9999,"subfield":{"id":"https://openalex.org/subfields/2214","display_name":"Media Technology"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11667","display_name":"Advanced Chemical Sensor Technologies","score":0.9883,"subfield":{"id":"https://openalex.org/subfields/2204","display_name":"Biomedical Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T13890","display_name":"Remote Sensing and Land Use","score":0.9831,"subfield":{"id":"https://openalex.org/subfields/1902","display_name":"Atmospheric Science"},"field":{"id":"https://openalex.org/fields/19","display_name":"Earth and Planetary Sciences"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/discriminative-model","display_name":"Discriminative model","score":0.84063625},{"id":"https://openalex.org/keywords/feature","display_name":"Feature (linguistics)","score":0.5450625},{"id":"https://openalex.org/keywords/imaging-spectrometer","display_name":"Imaging spectrometer","score":0.4767783},{"id":"https://openalex.org/keywords/transfer-of-learning","display_name":"Transfer of learning","score":0.4586345},{"id":"https://openalex.org/keywords/spectral-bands","display_name":"Spectral bands","score":0.43133646},{"id":"https://openalex.org/keywords/contextual-image-classification","display_name":"Contextual image classification","score":0.41944614}],"concepts":[{"id":"https://openalex.org/C97931131","wikidata":"https://www.wikidata.org/wiki/Q5282087","display_name":"Discriminative model","level":2,"score":0.84063625},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.82687783},{"id":"https://openalex.org/C159078339","wikidata":"https://www.wikidata.org/wiki/Q959005","display_name":"Hyperspectral imaging","level":2,"score":0.82667255},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.7862824},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.689726},{"id":"https://openalex.org/C81363708","wikidata":"https://www.wikidata.org/wiki/Q17084460","display_name":"Convolutional neural network","level":2,"score":0.6292939},{"id":"https://openalex.org/C108583219","wikidata":"https://www.wikidata.org/wiki/Q197536","display_name":"Deep learning","level":2,"score":0.6280534},{"id":"https://openalex.org/C52622490","wikidata":"https://www.wikidata.org/wiki/Q1026626","display_name":"Feature extraction","level":2,"score":0.61861056},{"id":"https://openalex.org/C2776401178","wikidata":"https://www.wikidata.org/wiki/Q12050496","display_name":"Feature (linguistics)","level":2,"score":0.5450625},{"id":"https://openalex.org/C18555067","wikidata":"https://www.wikidata.org/wiki/Q8375051","display_name":"Joint (building)","level":2,"score":0.5375528},{"id":"https://openalex.org/C159620131","wikidata":"https://www.wikidata.org/wiki/Q1938983","display_name":"Spatial analysis","level":2,"score":0.49362934},{"id":"https://openalex.org/C183852935","wikidata":"https://www.wikidata.org/wiki/Q6002848","display_name":"Imaging spectrometer","level":3,"score":0.4767783},{"id":"https://openalex.org/C150899416","wikidata":"https://www.wikidata.org/wiki/Q1820378","display_name":"Transfer of learning","level":2,"score":0.4586345},{"id":"https://openalex.org/C114700698","wikidata":"https://www.wikidata.org/wiki/Q2882278","display_name":"Spectral bands","level":2,"score":0.43133646},{"id":"https://openalex.org/C75294576","wikidata":"https://www.wikidata.org/wiki/Q5165192","display_name":"Contextual image classification","level":3,"score":0.41944614},{"id":"https://openalex.org/C62649853","wikidata":"https://www.wikidata.org/wiki/Q199687","display_name":"Remote sensing","level":1,"score":0.40166536},{"id":"https://openalex.org/C33390570","wikidata":"https://www.wikidata.org/wiki/Q188463","display_name":"Spectrometer","level":2,"score":0.2579297},{"id":"https://openalex.org/C115961682","wikidata":"https://www.wikidata.org/wiki/Q860623","display_name":"Image (mathematics)","level":2,"score":0.15226188},{"id":"https://openalex.org/C127313418","wikidata":"https://www.wikidata.org/wiki/Q1069","display_name":"Geology","level":0,"score":0.08091849},{"id":"https://openalex.org/C120665830","wikidata":"https://www.wikidata.org/wiki/Q14620","display_name":"Optics","level":1,"score":0.0791429},{"id":"https://openalex.org/C127413603","wikidata":"https://www.wikidata.org/wiki/Q11023","display_name":"Engineering","level":0,"score":0.062951475},{"id":"https://openalex.org/C170154142","wikidata":"https://www.wikidata.org/wiki/Q150737","display_name":"Architectural engineering","level":1,"score":0.0},{"id":"https://openalex.org/C138885662","wikidata":"https://www.wikidata.org/wiki/Q5891","display_name":"Philosophy","level":0,"score":0.0},{"id":"https://openalex.org/C41895202","wikidata":"https://www.wikidata.org/wiki/Q8162","display_name":"Linguistics","level":1,"score":0.0},{"id":"https://openalex.org/C121332964","wikidata":"https://www.wikidata.org/wiki/Q413","display_name":"Physics","level":0,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/tgrs.2017.2698503","pdf_url":null,"source":{"id":"https://openalex.org/S111326731","display_name":"IEEE Transactions on Geoscience and Remote Sensing","issn_l":"0196-2892","issn":["0196-2892","1558-0644"],"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":true,"is_core":true,"host_organization":"https://openalex.org/P4310319808","host_organization_name":"Institute of Electrical and Electronics Engineers","host_organization_lineage":["https://openalex.org/P4310319808"],"host_organization_lineage_names":["Institute of Electrical and Electronics Engineers"],"type":"journal"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[{"score":0.77,"id":"https://metadata.un.org/sdg/10","display_name":"Reduced inequalities"}],"grants":[{"funder":"https://openalex.org/F4320321001","funder_display_name":"National Natural Science Foundation of China","award_id":null},{"funder":"https://openalex.org/F4320321392","funder_display_name":"Northwestern Polytechnical University","award_id":"CX201621"},{"funder":"https://openalex.org/F4320322725","funder_display_name":"China Scholarship Council","award_id":"201506290120"},{"funder":"https://openalex.org/F4320334924","funder_display_name":"Program for New Century Excellent Talents in University","award_id":"NCET-12-0464"},{"funder":"https://openalex.org/F4320335787","funder_display_name":"Fundamental Research Funds for the Central Universities","award_id":"3102015ZY045"}],"datasets":[],"versions":[],"referenced_works_count":58,"referenced_works":["https://openalex.org/W134197611","https://openalex.org/W1502609557","https://openalex.org/W1523493493","https://openalex.org/W1686810756","https://openalex.org/W1955857676","https://openalex.org/W1990895816","https://openalex.org/W1998030734","https://openalex.org/W2005106632","https://openalex.org/W2013251902","https://openalex.org/W2015861736","https://openalex.org/W2018257962","https://openalex.org/W2019338222","https://openalex.org/W2029316659","https://openalex.org/W2041100636","https://openalex.org/W2043665634","https://openalex.org/W2044439250","https://openalex.org/W2053514113","https://openalex.org/W2064886835","https://openalex.org/W2067184918","https://openalex.org/W2090424610","https://openalex.org/W2097915756","https://openalex.org/W2098676252","https://openalex.org/W2100495367","https://openalex.org/W2114819256","https://openalex.org/W2131725398","https://openalex.org/W2136251662","https://openalex.org/W2141200610","https://openalex.org/W2145094598","https://openalex.org/W2149933564","https://openalex.org/W2153635508","https://openalex.org/W2155541015","https://openalex.org/W2155893237","https://openalex.org/W2161381512","https://openalex.org/W2163345210","https://openalex.org/W2163605009","https://openalex.org/W2165698076","https://openalex.org/W2168481151","https://openalex.org/W2179290474","https://openalex.org/W2187089797","https://openalex.org/W2190186811","https://openalex.org/W2248723555","https://openalex.org/W2257669061","https://openalex.org/W2267317359","https://openalex.org/W2276858186","https://openalex.org/W2293524743","https://openalex.org/W2314785379","https://openalex.org/W2319892480","https://openalex.org/W2344373810","https://openalex.org/W2345128667","https://openalex.org/W2412588858","https://openalex.org/W248389711","https://openalex.org/W2919115771","https://openalex.org/W2963578416","https://openalex.org/W2997574889","https://openalex.org/W3154664134","https://openalex.org/W4288076010","https://openalex.org/W4294375521","https://openalex.org/W4299518610"],"related_works":["https://openalex.org/W4386087993","https://openalex.org/W4379875147","https://openalex.org/W4285815841","https://openalex.org/W3189091156","https://openalex.org/W3176438653","https://openalex.org/W3014041368","https://openalex.org/W3012393889","https://openalex.org/W2981628807","https://openalex.org/W2761785940","https://openalex.org/W2009923527"],"abstract_inverted_index":{"Feature":[0],"extraction":[1],"is":[2,37,51,74],"of":[3,87,147],"significance":[4],"for":[5,127],"hyperspectral":[6],"image":[7],"(HSI)":[8],"classification.":[9,128],"Compared":[10],"with":[11,22,71,163,204],"conventional":[12],"hand-crafted":[13],"feature":[14],"extraction,":[15],"deep":[16,31,56,67,189],"learning":[17,32,139],"can":[18,199],"automatically":[19],"learn":[20],"features":[21,43,81,94,108,111,126,192,214],"discriminative":[23],"information.":[24],"However,":[25],"two":[26,85],"issues":[27],"exist":[28],"in":[29],"applying":[30],"to":[33,39,53,76,93,117,121,140],"HSIs.":[34,83],"One":[35],"issue":[36],"how":[38,52],"jointly":[40],"extract":[41,77,122],"spectral":[42,97,107],"and":[44,47,109,115,145,152,178,195],"spatial":[45,103,110],"features,":[46],"the":[48,55,78,88,96,102,123,130,137,142,148,169,187,212,216],"other":[49,155],"one":[50],"train":[54],"model":[57],"when":[58,202],"training":[59,131,165],"samples":[60,132,166],"are":[61,91,112,133,150,161,193],"scarce.":[62],"In":[63],"this":[64],"paper,":[65],"a":[66],"convolutional":[68],"neural":[69],"network":[70,90,149],"two-branch":[72],"architecture":[73],"proposed":[75,89],"joint":[79,124,190],"spectral-spatial":[80,125,191],"from":[82,95,154,168],"The":[84,105,207],"branches":[86],"devoted":[92],"domain":[98],"as":[99,101],"well":[100],"domain.":[104],"learned":[106,188],"then":[113],"concatenated":[114],"fed":[116],"fully":[118],"connected":[119],"layers":[120,160],"When":[129],"limited,":[134],"we":[135],"investigate":[136],"transfer":[138],"improve":[141],"performance.":[143,218],"Low":[144],"mid-layers":[146],"pretrained":[151],"transferred":[153,213],"data":[156,184],"sources;":[157],"only":[158],"top":[159],"trained":[162],"limited":[164],"extracted":[167],"target":[170],"scene.":[171],"Experiments":[172],"on":[173],"Airborne":[174],"Visible/Infrared":[175],"Imaging":[176,182],"Spectrometer":[177,183],"Reflective":[179],"Optics":[180],"System":[181],"demonstrate":[185],"that":[186,211],"discriminative,":[194],"competitive":[196],"classification":[197,217],"results":[198],"be":[200],"achieved":[201],"compared":[203],"state-of-the-art":[205],"methods.":[206],"experiments":[208],"also":[209],"reveal":[210],"boost":[215]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W2614326984","counts_by_year":[{"year":2025,"cited_by_count":10},{"year":2024,"cited_by_count":52},{"year":2023,"cited_by_count":59},{"year":2022,"cited_by_count":76},{"year":2021,"cited_by_count":70},{"year":2020,"cited_by_count":58},{"year":2019,"cited_by_count":58},{"year":2018,"cited_by_count":26},{"year":2017,"cited_by_count":2}],"updated_date":"2025-05-05T13:46:52.758901","created_date":"2017-05-26"}