{"id":"https://openalex.org/W1967145187","doi":"https://doi.org/10.1109/tfuzz.2013.2291567","title":"Fuzzy-Rough-Set-Based Active Learning","display_name":"Fuzzy-Rough-Set-Based Active Learning","publication_year":2014,"publication_date":"2014-11-20","ids":{"openalex":"https://openalex.org/W1967145187","doi":"https://doi.org/10.1109/tfuzz.2013.2291567","mag":"1967145187"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/tfuzz.2013.2291567","pdf_url":null,"source":{"id":"https://openalex.org/S134177497","display_name":"IEEE Transactions on Fuzzy Systems","issn_l":"1063-6706","issn":["1063-6706","1941-0034"],"is_oa":false,"is_in_doaj":false,"is_core":true,"host_organization":"https://openalex.org/P4310319808","host_organization_name":"Institute of Electrical and Electronics Engineers","host_organization_lineage":["https://openalex.org/P4310319808"],"host_organization_lineage_names":["Institute of Electrical and Electronics Engineers"],"type":"journal"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"journal-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5114377922","display_name":"Ran Wang","orcid":"https://orcid.org/0000-0002-2586-5604"},"institutions":[{"id":"https://openalex.org/I168719708","display_name":"City University of Hong Kong","ror":"https://ror.org/03q8dnn23","country_code":"HK","type":"education","lineage":["https://openalex.org/I168719708"]}],"countries":["HK"],"is_corresponding":false,"raw_author_name":"Ran Wang","raw_affiliation_strings":["Department of Computer Science, City University of Hong Kong, Kowloon, Hong Kong,"],"affiliations":[{"raw_affiliation_string":"Department of Computer Science, City University of Hong Kong, Kowloon, Hong Kong,","institution_ids":["https://openalex.org/I168719708"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5069347046","display_name":"Degang Chen","orcid":"https://orcid.org/0000-0002-1135-9807"},"institutions":[{"id":"https://openalex.org/I153473198","display_name":"North China Electric Power University","ror":"https://ror.org/04qr5t414","country_code":"CN","type":"education","lineage":["https://openalex.org/I153473198"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Degang Chen","raw_affiliation_strings":["Department of Mathematics and Physics , North China Electric Power University , Beijing , China"],"affiliations":[{"raw_affiliation_string":"Department of Mathematics and Physics , North China Electric Power University , Beijing , China","institution_ids":["https://openalex.org/I153473198"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5008386708","display_name":"Sam Kwong","orcid":null},"institutions":[{"id":"https://openalex.org/I168719708","display_name":"City University of Hong Kong","ror":"https://ror.org/03q8dnn23","country_code":"HK","type":"education","lineage":["https://openalex.org/I168719708"]}],"countries":["HK"],"is_corresponding":false,"raw_author_name":"Sam Kwong","raw_affiliation_strings":["Department of Computer Science, City University of Hong Kong, Kowloon, Hong Kong,"],"affiliations":[{"raw_affiliation_string":"Department of Computer Science, City University of Hong Kong, Kowloon, Hong Kong,","institution_ids":["https://openalex.org/I168719708"]}]}],"institution_assertions":[],"countries_distinct_count":2,"institutions_distinct_count":2,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":3.635,"has_fulltext":true,"fulltext_origin":"ngrams","cited_by_count":35,"citation_normalized_percentile":{"value":0.962481,"is_in_top_1_percent":false,"is_in_top_10_percent":true},"cited_by_percentile_year":{"min":94,"max":95},"biblio":{"volume":"22","issue":"6","first_page":"1699","last_page":"1704"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T12072","display_name":"Machine Learning and Algorithms","score":0.9991,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T12072","display_name":"Machine Learning and Algorithms","score":0.9991,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11063","display_name":"Rough Sets and Fuzzy Logic","score":0.998,"subfield":{"id":"https://openalex.org/subfields/1703","display_name":"Computational Theory and Mathematics"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11652","display_name":"Imbalanced Data Classification Techniques","score":0.9874,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/sample","display_name":"Sample (material)","score":0.6310902},{"id":"https://openalex.org/keywords/kernel","display_name":"Kernel (algebra)","score":0.5300436},{"id":"https://openalex.org/keywords/similarity","display_name":"Similarity (geometry)","score":0.44804087}],"concepts":[{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.6529806},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.6410002},{"id":"https://openalex.org/C198531522","wikidata":"https://www.wikidata.org/wiki/Q485146","display_name":"Sample (material)","level":2,"score":0.6310902},{"id":"https://openalex.org/C12267149","wikidata":"https://www.wikidata.org/wiki/Q282453","display_name":"Support vector machine","level":2,"score":0.56813574},{"id":"https://openalex.org/C74193536","wikidata":"https://www.wikidata.org/wiki/Q574844","display_name":"Kernel (algebra)","level":2,"score":0.5300436},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.51710534},{"id":"https://openalex.org/C2780009758","wikidata":"https://www.wikidata.org/wiki/Q6804172","display_name":"Measure (data warehouse)","level":2,"score":0.48489624},{"id":"https://openalex.org/C42011625","wikidata":"https://www.wikidata.org/wiki/Q1055058","display_name":"Fuzzy set","level":3,"score":0.47044557},{"id":"https://openalex.org/C111012933","wikidata":"https://www.wikidata.org/wiki/Q3137210","display_name":"Rough set","level":2,"score":0.4564027},{"id":"https://openalex.org/C103278499","wikidata":"https://www.wikidata.org/wiki/Q254465","display_name":"Similarity (geometry)","level":3,"score":0.44804087},{"id":"https://openalex.org/C58166","wikidata":"https://www.wikidata.org/wiki/Q224821","display_name":"Fuzzy logic","level":2,"score":0.43349615},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.42693073},{"id":"https://openalex.org/C177264268","wikidata":"https://www.wikidata.org/wiki/Q1514741","display_name":"Set (abstract data type)","level":2,"score":0.41966212},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.38844267},{"id":"https://openalex.org/C124101348","wikidata":"https://www.wikidata.org/wiki/Q172491","display_name":"Data mining","level":1,"score":0.3341503},{"id":"https://openalex.org/C115961682","wikidata":"https://www.wikidata.org/wiki/Q860623","display_name":"Image (mathematics)","level":2,"score":0.079494715},{"id":"https://openalex.org/C185592680","wikidata":"https://www.wikidata.org/wiki/Q2329","display_name":"Chemistry","level":0,"score":0.0},{"id":"https://openalex.org/C43617362","wikidata":"https://www.wikidata.org/wiki/Q170050","display_name":"Chromatography","level":1,"score":0.0},{"id":"https://openalex.org/C114614502","wikidata":"https://www.wikidata.org/wiki/Q76592","display_name":"Combinatorics","level":1,"score":0.0},{"id":"https://openalex.org/C199360897","wikidata":"https://www.wikidata.org/wiki/Q9143","display_name":"Programming language","level":1,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/tfuzz.2013.2291567","pdf_url":null,"source":{"id":"https://openalex.org/S134177497","display_name":"IEEE Transactions on Fuzzy Systems","issn_l":"1063-6706","issn":["1063-6706","1941-0034"],"is_oa":false,"is_in_doaj":false,"is_core":true,"host_organization":"https://openalex.org/P4310319808","host_organization_name":"Institute of Electrical and Electronics Engineers","host_organization_lineage":["https://openalex.org/P4310319808"],"host_organization_lineage_names":["Institute of Electrical and Electronics Engineers"],"type":"journal"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[{"id":"https://metadata.un.org/sdg/16","score":0.78,"display_name":"Peace, justice, and strong institutions"}],"grants":[{"funder":"https://openalex.org/F4320321001","funder_display_name":"National Natural Science Foundation of China","award_id":"71171080"},{"funder":"https://openalex.org/F4320321001","funder_display_name":"National Natural Science Foundation of China","award_id":"61272289"}],"datasets":[],"versions":[],"referenced_works_count":23,"referenced_works":["https://openalex.org/W1483816357","https://openalex.org/W1484754041","https://openalex.org/W1508965297","https://openalex.org/W1528361845","https://openalex.org/W1982418571","https://openalex.org/W1993898444","https://openalex.org/W2002680690","https://openalex.org/W2014932484","https://openalex.org/W2037768666","https://openalex.org/W2056784354","https://openalex.org/W2059138769","https://openalex.org/W2061241120","https://openalex.org/W2073102330","https://openalex.org/W2076837108","https://openalex.org/W2080021732","https://openalex.org/W2096393821","https://openalex.org/W2137396323","https://openalex.org/W2145452316","https://openalex.org/W2153098502","https://openalex.org/W2154887800","https://openalex.org/W2162845119","https://openalex.org/W2169323880","https://openalex.org/W4285719527"],"related_works":["https://openalex.org/W4390066334","https://openalex.org/W2978519593","https://openalex.org/W2392963705","https://openalex.org/W2382278777","https://openalex.org/W2375932290","https://openalex.org/W2353240132","https://openalex.org/W2167403502","https://openalex.org/W2107349454","https://openalex.org/W2102746356","https://openalex.org/W1587347718"],"abstract_inverted_index":{"Determining":[0],"the":[1,19,43,53,66,70,79,88,103,124,134,150,153],"informativeness":[2],"of":[3,46,72,90,106,152],"unlabeled":[4,85,92],"samples":[5,83,108],"is":[6,17,36,50,75,145],"a":[7,31,47,118,137],"key":[8],"issue":[9],"in":[10,56,65],"active":[11,33,142],"learning.":[12],"One":[13],"solution":[14],"to":[15,38,77,95,116,122,133],"this":[16,29,40],"using":[18],"sample's":[20,125],"inconsistency":[21],"between":[22,81],"conditional":[23],"features":[24],"and":[25,84],"decision":[26,67,97],"labels.":[27],"In":[28],"paper,":[30],"fuzzy-rough-set-based":[32],"learning":[34,143],"model":[35],"proposed":[37,76,154],"tackle":[39],"problem.":[41],"First,":[42],"consistence":[44],"degree":[45],"labeled":[48,82,107],"sample":[49,73,93,119],"computed":[51,100],"by":[52],"lower":[54],"approximations":[55],"fuzzy":[57],"rough":[58],"set,":[59],"which":[60],"reflects":[61],"its":[62],"minimum":[63],"membership":[64],"class.":[68],"Then,":[69],"concept":[71],"covering":[74,104],"measure":[78,123],"relationship":[80],"samples.":[86],"Afterward,":[87],"memberships":[89,113],"an":[91],"belonging":[94],"different":[96],"classes":[98],"are":[99,114],"based":[101],"on":[102,109],"degrees":[105],"it.":[110],"Finally,":[111],"these":[112],"used":[115],"form":[117],"selection":[120],"criterion":[121],"inconsistency.":[126],"By":[127],"applying":[128],"Gaussian":[129],"kernel-based":[130],"similarity":[131],"relation":[132],"aforementioned":[135],"processes,":[136],"support":[138],"vector":[139],"machine":[140],"(SVM)-based":[141],"scheme":[144],"developed.":[146],"Experimental":[147],"results":[148],"demonstrate":[149],"effectiveness":[151],"model.":[155]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W1967145187","counts_by_year":[{"year":2024,"cited_by_count":1},{"year":2023,"cited_by_count":2},{"year":2022,"cited_by_count":3},{"year":2021,"cited_by_count":1},{"year":2020,"cited_by_count":4},{"year":2019,"cited_by_count":10},{"year":2018,"cited_by_count":3},{"year":2017,"cited_by_count":5},{"year":2016,"cited_by_count":1},{"year":2015,"cited_by_count":2},{"year":2014,"cited_by_count":3}],"updated_date":"2025-01-06T00:17:15.367737","created_date":"2016-06-24"}