{"id":"https://openalex.org/W4313172518","doi":"https://doi.org/10.1109/tetc.2022.3230961","title":"ROSETTA: A Resource and Energy-Efficient Inference Processor for Recurrent Neural Networks Based on Programmable Data Formats and Fine Activation Pruning","display_name":"ROSETTA: A Resource and Energy-Efficient Inference Processor for Recurrent Neural Networks Based on Programmable Data Formats and Fine Activation Pruning","publication_year":2022,"publication_date":"2022-12-27","ids":{"openalex":"https://openalex.org/W4313172518","doi":"https://doi.org/10.1109/tetc.2022.3230961"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/tetc.2022.3230961","pdf_url":null,"source":{"id":"https://openalex.org/S2496326734","display_name":"IEEE Transactions on Emerging Topics in Computing","issn_l":"2168-6750","issn":["2168-6750","2376-4562"],"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":true,"is_core":true,"host_organization":"https://openalex.org/P4310319808","host_organization_name":"Institute of Electrical and Electronics Engineers","host_organization_lineage":["https://openalex.org/P4310319808"],"host_organization_lineage_names":["Institute of Electrical and Electronics Engineers"],"type":"journal"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"journal-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5100603325","display_name":"Jiho Kim","orcid":"https://orcid.org/0000-0002-3940-1659"},"institutions":[{"id":"https://openalex.org/I24456540","display_name":"Korea Aerospace University","ror":"https://ror.org/05jmm0651","country_code":"KR","type":"funder","lineage":["https://openalex.org/I24456540"]}],"countries":["KR"],"is_corresponding":false,"raw_author_name":"Jiho Kim","raw_affiliation_strings":["School of Electronics and Information Engineering, Korea Aerospace University, Goyang-si, Gyeonggi-do, Republic of Korea"],"affiliations":[{"raw_affiliation_string":"School of Electronics and Information Engineering, Korea Aerospace University, Goyang-si, Gyeonggi-do, Republic of Korea","institution_ids":["https://openalex.org/I24456540"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5100359397","display_name":"Tae\u2010Hwan Kim","orcid":"https://orcid.org/0000-0001-8336-3170"},"institutions":[{"id":"https://openalex.org/I24456540","display_name":"Korea Aerospace University","ror":"https://ror.org/05jmm0651","country_code":"KR","type":"funder","lineage":["https://openalex.org/I24456540"]}],"countries":["KR"],"is_corresponding":false,"raw_author_name":"Tae-Hwan Kim","raw_affiliation_strings":["School of Electronics and Information Engineering, Korea Aerospace University, Goyang-si, Gyeonggi-do, Republic of Korea"],"affiliations":[{"raw_affiliation_string":"School of Electronics and Information Engineering, Korea Aerospace University, Goyang-si, Gyeonggi-do, Republic of Korea","institution_ids":["https://openalex.org/I24456540"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":1,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":0.261,"has_fulltext":false,"cited_by_count":2,"citation_normalized_percentile":{"value":0.523442,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":69,"max":75},"biblio":{"volume":"11","issue":"3","first_page":"650","last_page":"663"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10036","display_name":"Advanced Neural Network Applications","score":0.9997,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10036","display_name":"Advanced Neural Network Applications","score":0.9997,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10320","display_name":"Neural Networks and Applications","score":0.9968,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10054","display_name":"Parallel Computing and Optimization Techniques","score":0.9932,"subfield":{"id":"https://openalex.org/subfields/1708","display_name":"Hardware and Architecture"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/pruning","display_name":"Pruning","score":0.7241107},{"id":"https://openalex.org/keywords/flops","display_name":"FLOPS","score":0.4555094},{"id":"https://openalex.org/keywords/lookup-table","display_name":"Lookup table","score":0.44995126}],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.84800255},{"id":"https://openalex.org/C108010975","wikidata":"https://www.wikidata.org/wiki/Q500094","display_name":"Pruning","level":2,"score":0.7241107},{"id":"https://openalex.org/C2776214188","wikidata":"https://www.wikidata.org/wiki/Q408386","display_name":"Inference","level":2,"score":0.692288},{"id":"https://openalex.org/C147168706","wikidata":"https://www.wikidata.org/wiki/Q1457734","display_name":"Recurrent neural network","level":3,"score":0.49854612},{"id":"https://openalex.org/C84211073","wikidata":"https://www.wikidata.org/wiki/Q117879","display_name":"Floating point","level":2,"score":0.49734786},{"id":"https://openalex.org/C3826847","wikidata":"https://www.wikidata.org/wiki/Q188768","display_name":"FLOPS","level":2,"score":0.4555094},{"id":"https://openalex.org/C134835016","wikidata":"https://www.wikidata.org/wiki/Q690265","display_name":"Lookup table","level":2,"score":0.44995126},{"id":"https://openalex.org/C113775141","wikidata":"https://www.wikidata.org/wiki/Q428691","display_name":"Computer engineering","level":1,"score":0.43365565},{"id":"https://openalex.org/C50644808","wikidata":"https://www.wikidata.org/wiki/Q192776","display_name":"Artificial neural network","level":2,"score":0.43050647},{"id":"https://openalex.org/C2742236","wikidata":"https://www.wikidata.org/wiki/Q924713","display_name":"Efficient energy use","level":2,"score":0.4268327},{"id":"https://openalex.org/C173608175","wikidata":"https://www.wikidata.org/wiki/Q232661","display_name":"Parallel computing","level":1,"score":0.3958255},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.3089541},{"id":"https://openalex.org/C11413529","wikidata":"https://www.wikidata.org/wiki/Q8366","display_name":"Algorithm","level":1,"score":0.21822408},{"id":"https://openalex.org/C119599485","wikidata":"https://www.wikidata.org/wiki/Q43035","display_name":"Electrical engineering","level":1,"score":0.0},{"id":"https://openalex.org/C6557445","wikidata":"https://www.wikidata.org/wiki/Q173113","display_name":"Agronomy","level":1,"score":0.0},{"id":"https://openalex.org/C86803240","wikidata":"https://www.wikidata.org/wiki/Q420","display_name":"Biology","level":0,"score":0.0},{"id":"https://openalex.org/C199360897","wikidata":"https://www.wikidata.org/wiki/Q9143","display_name":"Programming language","level":1,"score":0.0},{"id":"https://openalex.org/C127413603","wikidata":"https://www.wikidata.org/wiki/Q11023","display_name":"Engineering","level":0,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/tetc.2022.3230961","pdf_url":null,"source":{"id":"https://openalex.org/S2496326734","display_name":"IEEE Transactions on Emerging Topics in Computing","issn_l":"2168-6750","issn":["2168-6750","2376-4562"],"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":true,"is_core":true,"host_organization":"https://openalex.org/P4310319808","host_organization_name":"Institute of Electrical and Electronics Engineers","host_organization_lineage":["https://openalex.org/P4310319808"],"host_organization_lineage_names":["Institute of Electrical and Electronics Engineers"],"type":"journal"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[{"score":0.86,"id":"https://metadata.un.org/sdg/7","display_name":"Affordable and clean energy"}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":43,"referenced_works":["https://openalex.org/W1632114991","https://openalex.org/W1689711448","https://openalex.org/W1800356822","https://openalex.org/W1986198459","https://openalex.org/W2064675550","https://openalex.org/W2122585011","https://openalex.org/W2131774270","https://openalex.org/W2157331557","https://openalex.org/W2585720638","https://openalex.org/W2588448445","https://openalex.org/W2594492285","https://openalex.org/W2632775315","https://openalex.org/W2786577118","https://openalex.org/W2883929540","https://openalex.org/W2889959382","https://openalex.org/W2914681245","https://openalex.org/W2915106038","https://openalex.org/W2940345045","https://openalex.org/W2950533501","https://openalex.org/W2962820060","https://openalex.org/W2963363373","https://openalex.org/W2963820107","https://openalex.org/W2964033223","https://openalex.org/W2984242728","https://openalex.org/W3006942268","https://openalex.org/W3027324516","https://openalex.org/W3039595400","https://openalex.org/W3040903763","https://openalex.org/W3108690123","https://openalex.org/W3110217202","https://openalex.org/W3114397406","https://openalex.org/W3150182863","https://openalex.org/W3163275603","https://openalex.org/W3165173626","https://openalex.org/W3180683307","https://openalex.org/W3187677606","https://openalex.org/W3213445774","https://openalex.org/W4200157451","https://openalex.org/W4205713712","https://openalex.org/W4213033874","https://openalex.org/W4254816979","https://openalex.org/W4285179486","https://openalex.org/W4385245566"],"related_works":["https://openalex.org/W4382323155","https://openalex.org/W4315697128","https://openalex.org/W4287067436","https://openalex.org/W3205506801","https://openalex.org/W3183570023","https://openalex.org/W3092292339","https://openalex.org/W2971502891","https://openalex.org/W2560894929","https://openalex.org/W2156524298","https://openalex.org/W2106942255"],"abstract_inverted_index":{"Recurrent":[0],"neural":[1],"networks":[2],"(RNNs)":[3],"are":[4,29,169],"extensively":[5],"employed":[6],"to":[7,38,77,114,184],"perform":[8],"inference":[9,28,42,61,160,204],"based":[10,96],"on":[11,97],"the":[12,16,49,121,174,179],"temporal":[13],"features":[14],"of":[15,167,173,198],"input":[17],"data.":[18],"However,":[19],"their":[20],"computational":[21],"workload":[22],"and":[23,53,110,141,151,164,186],"power":[24,54],"consumption":[25],"involved":[26],"in":[27,32,43,48,124,129,178],"prohibitively":[30],"high":[31,83,103,116,145],"practice,":[33],"which":[34],"may":[35],"be":[36],"problematic":[37],"achieve":[39,78,115],"a":[40,79,86,102,125,130,139,202],"high-speed":[41],"devices":[44],"with":[45,85,101],"tight":[46],"limitations":[47],"available":[50],"silicon":[51],"resources":[52],"supply.":[55],"This":[56],"paper":[57],"presents":[58],"an":[59],"efficient":[60],"processor":[62,176],"for":[63,73,194],"RNNs,":[64],"named":[65],"ROSETTA.":[66],"ROSETTA":[67,90,107,137,168],"supports":[68],"multiple":[69],"data":[70,88],"formats":[71],"programmable":[72],"each":[74],"vector":[75,94],"operand":[76],"wide":[80],"range":[81],"or":[82],"precision":[84],"limited":[87],"size.":[89],"consistently":[91],"performs":[92],"every":[93],"operation":[95],"homogeneous":[98],"processing":[99],"units":[100],"utilization":[104],"rate.":[105],"Moreover,":[106],"skips":[108],"operations":[109],"reduces":[111],"memory":[112],"accesses":[113],"energy":[117,142,165],"efficiency":[118,143,166],"by":[119,182],"pruning":[120],"activation":[122],"elements":[123],"fine-grained":[126],"manner.":[127],"Implemented":[128],"low-cost":[131],"28":[132],"nm":[133],"field-programmable":[134],"gate":[135],"array,":[136],"exhibits":[138],"resource":[140,163],"as":[144,146],"2.51":[147],"-":[148,153],"1.14":[149],"MOP/s/LUT":[150],"434.01":[152],"113.29":[154],"GOP/s/W,":[155],"respectively,":[156],"while":[157],"producing":[158],"near-floating-point":[159],"results.":[161],"The":[162,189],"higher":[170],"than":[171],"those":[172],"previous":[175],"implemented":[177],"same":[180],"device":[181],"up":[183],"206.1%":[185],"304.0%,":[187],"respectively.":[188],"functionality":[190],"has":[191],"been":[192],"verified":[193],"several":[195],"RNN":[196],"models":[197],"various":[199],"types":[200],"under":[201],"fully-integrated":[203],"system.":[205]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4313172518","counts_by_year":[{"year":2024,"cited_by_count":1},{"year":2023,"cited_by_count":1}],"updated_date":"2025-04-22T11:47:22.729272","created_date":"2023-01-06"}