{"id":"https://openalex.org/W2315907656","doi":"https://doi.org/10.1109/tcsvt.2016.2539684","title":"Early Detection of Sudden Pedestrian Crossing for Safe Driving During Summer Nights","display_name":"Early Detection of Sudden Pedestrian Crossing for Safe Driving During Summer Nights","publication_year":2016,"publication_date":"2016-03-08","ids":{"openalex":"https://openalex.org/W2315907656","doi":"https://doi.org/10.1109/tcsvt.2016.2539684","mag":"2315907656"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/tcsvt.2016.2539684","pdf_url":null,"source":{"id":"https://openalex.org/S115173108","display_name":"IEEE Transactions on Circuits and Systems for Video Technology","issn_l":"1051-8215","issn":["1051-8215","1558-2205"],"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":true,"is_core":true,"host_organization":"https://openalex.org/P4310319808","host_organization_name":"Institute of Electrical and Electronics Engineers","host_organization_lineage":["https://openalex.org/P4310319808"],"host_organization_lineage_names":["Institute of Electrical and Electronics Engineers"],"type":"journal"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"journal-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5066130745","display_name":"Mira Jeong","orcid":"https://orcid.org/0000-0002-7492-7795"},"institutions":[{"id":"https://openalex.org/I52010207","display_name":"Keimyung University","ror":"https://ror.org/00tjv0s33","country_code":"KR","type":"funder","lineage":["https://openalex.org/I52010207"]}],"countries":["KR"],"is_corresponding":false,"raw_author_name":"Mira Jeong","raw_affiliation_strings":["Computer Vision and Pattern Recognition Laboratory, Keimyung University, Daegu, South Korea"],"affiliations":[{"raw_affiliation_string":"Computer Vision and Pattern Recognition Laboratory, Keimyung University, Daegu, South Korea","institution_ids":["https://openalex.org/I52010207"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5035256239","display_name":"Byoung Chul Ko","orcid":"https://orcid.org/0000-0002-7284-0768"},"institutions":[{"id":"https://openalex.org/I52010207","display_name":"Keimyung University","ror":"https://ror.org/00tjv0s33","country_code":"KR","type":"funder","lineage":["https://openalex.org/I52010207"]}],"countries":["KR"],"is_corresponding":false,"raw_author_name":"Byoung Chul Ko","raw_affiliation_strings":["Computer Vision and Pattern Recognition Laboratory, Keimyung University, Daegu, South Korea"],"affiliations":[{"raw_affiliation_string":"Computer Vision and Pattern Recognition Laboratory, Keimyung University, Daegu, South Korea","institution_ids":["https://openalex.org/I52010207"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5108553716","display_name":"Jae-Yeal Nam","orcid":null},"institutions":[{"id":"https://openalex.org/I52010207","display_name":"Keimyung University","ror":"https://ror.org/00tjv0s33","country_code":"KR","type":"funder","lineage":["https://openalex.org/I52010207"]}],"countries":["KR"],"is_corresponding":false,"raw_author_name":"Jae-Yeal Nam","raw_affiliation_strings":["Computer Vision and Pattern Recognition Laboratory, Keimyung University, Daegu, South Korea"],"affiliations":[{"raw_affiliation_string":"Computer Vision and Pattern Recognition Laboratory, Keimyung University, Daegu, South Korea","institution_ids":["https://openalex.org/I52010207"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":1,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":3.93,"has_fulltext":true,"fulltext_origin":"ngrams","cited_by_count":64,"citation_normalized_percentile":{"value":0.999937,"is_in_top_1_percent":true,"is_in_top_10_percent":true},"cited_by_percentile_year":{"min":97,"max":98},"biblio":{"volume":"27","issue":"6","first_page":"1368","last_page":"1380"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10331","display_name":"Video Surveillance and Tracking Methods","score":0.9997,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10331","display_name":"Video Surveillance and Tracking Methods","score":0.9997,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11099","display_name":"Autonomous Vehicle Technology and Safety","score":0.9968,"subfield":{"id":"https://openalex.org/subfields/2203","display_name":"Automotive Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10036","display_name":"Advanced Neural Network Applications","score":0.9959,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/pedestrian-crossing","display_name":"Pedestrian crossing","score":0.7941121},{"id":"https://openalex.org/keywords/pedestrian-detection","display_name":"Pedestrian detection","score":0.7076666},{"id":"https://openalex.org/keywords/road-surface","display_name":"Road surface","score":0.4452843}],"concepts":[{"id":"https://openalex.org/C2777113093","wikidata":"https://www.wikidata.org/wiki/Q221488","display_name":"Pedestrian","level":2,"score":0.8059},{"id":"https://openalex.org/C2777819797","wikidata":"https://www.wikidata.org/wiki/Q8010","display_name":"Pedestrian crossing","level":3,"score":0.7941121},{"id":"https://openalex.org/C2780156472","wikidata":"https://www.wikidata.org/wiki/Q2355550","display_name":"Pedestrian detection","level":3,"score":0.7076666},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.62873316},{"id":"https://openalex.org/C31972630","wikidata":"https://www.wikidata.org/wiki/Q844240","display_name":"Computer vision","level":1,"score":0.55852735},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.54504},{"id":"https://openalex.org/C2780042925","wikidata":"https://www.wikidata.org/wiki/Q1049667","display_name":"Road surface","level":2,"score":0.4452843},{"id":"https://openalex.org/C192209626","wikidata":"https://www.wikidata.org/wiki/Q190909","display_name":"Focus (optics)","level":2,"score":0.4354192},{"id":"https://openalex.org/C22212356","wikidata":"https://www.wikidata.org/wiki/Q775325","display_name":"Transport engineering","level":1,"score":0.18594849},{"id":"https://openalex.org/C127413603","wikidata":"https://www.wikidata.org/wiki/Q11023","display_name":"Engineering","level":0,"score":0.1841704},{"id":"https://openalex.org/C147176958","wikidata":"https://www.wikidata.org/wiki/Q77590","display_name":"Civil engineering","level":1,"score":0.0},{"id":"https://openalex.org/C121332964","wikidata":"https://www.wikidata.org/wiki/Q413","display_name":"Physics","level":0,"score":0.0},{"id":"https://openalex.org/C120665830","wikidata":"https://www.wikidata.org/wiki/Q14620","display_name":"Optics","level":1,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/tcsvt.2016.2539684","pdf_url":null,"source":{"id":"https://openalex.org/S115173108","display_name":"IEEE Transactions on Circuits and Systems for Video Technology","issn_l":"1051-8215","issn":["1051-8215","1558-2205"],"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":true,"is_core":true,"host_organization":"https://openalex.org/P4310319808","host_organization_name":"Institute of Electrical and Electronics Engineers","host_organization_lineage":["https://openalex.org/P4310319808"],"host_organization_lineage_names":["Institute of Electrical and Electronics Engineers"],"type":"journal"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[{"score":0.6,"display_name":"Sustainable cities and communities","id":"https://metadata.un.org/sdg/11"}],"grants":[{"funder":"https://openalex.org/F4320321250","funder_display_name":"Keimyung University","award_id":null},{"funder":"https://openalex.org/F4320322120","funder_display_name":"National Research Foundation of Korea","award_id":"NRF-2011-0021780"}],"datasets":[],"versions":[],"referenced_works_count":37,"referenced_works":["https://openalex.org/W115232434","https://openalex.org/W145648335","https://openalex.org/W1541438145","https://openalex.org/W1544640522","https://openalex.org/W1910108985","https://openalex.org/W2004641798","https://openalex.org/W2014240407","https://openalex.org/W2031454541","https://openalex.org/W2060745441","https://openalex.org/W2070792402","https://openalex.org/W2075674144","https://openalex.org/W2090764237","https://openalex.org/W2098699644","https://openalex.org/W2115471590","https://openalex.org/W2115574509","https://openalex.org/W2117002459","https://openalex.org/W2118877769","https://openalex.org/W2120339771","https://openalex.org/W2125556102","https://openalex.org/W2125896931","https://openalex.org/W2127420331","https://openalex.org/W2133984628","https://openalex.org/W2137545186","https://openalex.org/W2139479830","https://openalex.org/W2147885774","https://openalex.org/W2154582212","https://openalex.org/W2155661370","https://openalex.org/W2159386181","https://openalex.org/W2161470382","https://openalex.org/W2161969291","https://openalex.org/W2166623283","https://openalex.org/W2168356304","https://openalex.org/W2169564179","https://openalex.org/W2269844376","https://openalex.org/W2739698496","https://openalex.org/W45345801","https://openalex.org/W605704355"],"related_works":["https://openalex.org/W650967530","https://openalex.org/W4390813505","https://openalex.org/W4388221821","https://openalex.org/W2981141433","https://openalex.org/W2972620127","https://openalex.org/W2905794575","https://openalex.org/W1969216335","https://openalex.org/W187110833","https://openalex.org/W1486225309","https://openalex.org/W122740207"],"abstract_inverted_index":{"Sudden":[0],"pedestrian":[1,67,218],"crossing":[2],"(SPC)":[3],"is":[4,48,98,158,177,235],"the":[5,35,42,46,56,70,83,88,105,114,150,154,181,184,188,202,227],"major":[6],"reason":[7],"for":[8,21,129],"pedestrian-vehicle":[9],"crashes.":[10],"In":[11],"this":[12],"paper,":[13],"we":[14,111],"focus":[15],"on":[16,34,66,80,180],"detecting":[17,130],"SPCs":[18],"at":[19,100],"night":[20],"supporting":[22],"an":[23,223],"advanced":[24],"driver":[25],"assistance":[26],"system":[27],"using":[28,141,160],"a":[29,39,161],"far-infrared":[30],"(FIR)":[31],"camera":[32],"mounted":[33],"front":[36],"roof":[37],"of":[38,45,55,90,117,153,187,206,239],"vehicle.":[40,155],"Although":[41],"thermal":[43],"temperature":[44],"road":[47,138],"similar":[49],"to":[50,149,216],"or":[51,73],"higher":[52,99],"than":[53,103,237],"that":[54,101,134,230],"pedestrians":[57,93],"during":[58,69,82,104],"summer":[59,85],"nights,":[60],"many":[61],"previous":[62],"researches":[63],"have":[64],"focused":[65],"detection":[68,157,233],"winter,":[71],"spring,":[72],"autumn":[74],"seasons.":[75,107],"However,":[76],"our":[77,126],"research":[78],"concentrates":[79],"SPC":[81,176,232],"hot":[84],"season":[86],"because":[87],"number":[89],"collisions":[91],"between":[92],"and":[94,120,144,169,183,204,226],"vehicles":[95],"in":[96],"Korea":[97],"time":[102],"other":[106,240],"For":[108],"real-time":[109],"processing,":[110],"first":[112],"decide":[113],"optimal":[115],"levels":[116],"image":[118],"scaling":[119],"search":[121],"area.":[122],"We":[123],"then":[124],"use":[125],"proposed":[127,211],"method":[128],"virtual":[131,196],"reference":[132,197],"lines":[133,147],"are":[135],"associated":[136],"with":[137,165,195],"segmentation":[139],"without":[140],"color":[142],"information":[143],"change":[145],"these":[146],"according":[148],"turning":[151],"direction":[152,203],"Pedestrian":[156],"conducted":[159],"cascade":[162],"random":[163],"forest":[164],"low-dimensional":[166],"Haar-like":[167],"features":[168,186],"oriented":[170],"center-symmetric":[171],"local":[172],"binary":[173],"patterns.":[174],"The":[175,210],"predicted":[178],"based":[179],"likelihood":[182],"spatiotemporal":[185],"pedestrians,":[189],"such":[190],"as":[191,199,201],"their":[192],"overlapping":[193],"ratio":[194],"lines,":[198],"well":[200],"magnitude":[205],"each":[207],"pedestrian's":[208],"movement.":[209],"algorithm":[212],"was":[213],"successfully":[214],"applied":[215],"various":[217],"data":[219],"sets":[220],"captured":[221],"by":[222],"FIR":[224],"camera,":[225],"results":[228],"show":[229],"its":[231],"performance":[234],"better":[236],"those":[238],"methods.":[241]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W2315907656","counts_by_year":[{"year":2025,"cited_by_count":1},{"year":2024,"cited_by_count":5},{"year":2023,"cited_by_count":9},{"year":2022,"cited_by_count":7},{"year":2021,"cited_by_count":10},{"year":2020,"cited_by_count":9},{"year":2019,"cited_by_count":5},{"year":2018,"cited_by_count":8},{"year":2017,"cited_by_count":5},{"year":2016,"cited_by_count":5}],"updated_date":"2025-03-21T03:43:02.055380","created_date":"2016-06-24"}