{"id":"https://openalex.org/W2054855363","doi":"https://doi.org/10.1109/tcsvt.2005.844456","title":"Multiscale LMMSE-based image denoising with optimal wavelet selection","display_name":"Multiscale LMMSE-based image denoising with optimal wavelet selection","publication_year":2005,"publication_date":"2005-04-01","ids":{"openalex":"https://openalex.org/W2054855363","doi":"https://doi.org/10.1109/tcsvt.2005.844456","mag":"2054855363"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/tcsvt.2005.844456","pdf_url":null,"source":{"id":"https://openalex.org/S115173108","display_name":"IEEE Transactions on Circuits and Systems for Video Technology","issn_l":"1051-8215","issn":["1051-8215","1558-2205"],"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":true,"is_core":true,"host_organization":"https://openalex.org/P4310319808","host_organization_name":"Institute of Electrical and Electronics Engineers","host_organization_lineage":["https://openalex.org/P4310319808"],"host_organization_lineage_names":["Institute of Electrical and Electronics Engineers"],"type":"journal"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"journal-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5100433899","display_name":"Lei Zhang","orcid":"https://orcid.org/0000-0002-2078-4215"},"institutions":[{"id":"https://openalex.org/I98251732","display_name":"McMaster University","ror":"https://ror.org/02fa3aq29","country_code":"CA","type":"funder","lineage":["https://openalex.org/I98251732"]}],"countries":["CA"],"is_corresponding":false,"raw_author_name":"None Lei Zhang","raw_affiliation_strings":["Dept. of Electr. & Comput Eng., McMaster Univ., Hamilton, Ont., Canada"],"affiliations":[{"raw_affiliation_string":"Dept. of Electr. & Comput Eng., McMaster Univ., Hamilton, Ont., Canada","institution_ids":["https://openalex.org/I98251732"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5056299305","display_name":"Paul Bao","orcid":"https://orcid.org/0000-0002-9539-0181"},"institutions":[{"id":"https://openalex.org/I172675005","display_name":"Nanyang Technological University","ror":"https://ror.org/02e7b5302","country_code":"SG","type":"funder","lineage":["https://openalex.org/I172675005"]}],"countries":["SG"],"is_corresponding":false,"raw_author_name":"P. Bao","raw_affiliation_strings":["[School of Engineering, Nanyang Technological University, Singapore]"],"affiliations":[{"raw_affiliation_string":"[School of Engineering, Nanyang Technological University, Singapore]","institution_ids":["https://openalex.org/I172675005"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5101467563","display_name":"Xiaolin Wu","orcid":"https://orcid.org/0000-0002-7230-9168"},"institutions":[{"id":"https://openalex.org/I98251732","display_name":"McMaster University","ror":"https://ror.org/02fa3aq29","country_code":"CA","type":"funder","lineage":["https://openalex.org/I98251732"]}],"countries":["CA"],"is_corresponding":false,"raw_author_name":"None Xiaolin Wu","raw_affiliation_strings":["Department of Electrical and Computer Engineering, McMaster University, Hamilton, Ont., Canada#TAB#"],"affiliations":[{"raw_affiliation_string":"Department of Electrical and Computer Engineering, McMaster University, Hamilton, Ont., Canada#TAB#","institution_ids":["https://openalex.org/I98251732"]}]}],"institution_assertions":[],"countries_distinct_count":2,"institutions_distinct_count":2,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":4.977,"has_fulltext":true,"fulltext_origin":"ngrams","cited_by_count":108,"citation_normalized_percentile":{"value":0.984366,"is_in_top_1_percent":false,"is_in_top_10_percent":true},"cited_by_percentile_year":{"min":96,"max":97},"biblio":{"volume":"15","issue":"4","first_page":"469","last_page":"481"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10688","display_name":"Image and Signal Denoising Methods","score":0.9999,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10688","display_name":"Image and Signal Denoising Methods","score":0.9999,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11659","display_name":"Advanced Image Fusion Techniques","score":0.9941,"subfield":{"id":"https://openalex.org/subfields/2214","display_name":"Media Technology"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10052","display_name":"Medical Image Segmentation Techniques","score":0.9865,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/stationary-wavelet-transform","display_name":"Stationary wavelet transform","score":0.61697185},{"id":"https://openalex.org/keywords/second-generation-wavelet-transform","display_name":"Second-generation wavelet transform","score":0.576971},{"id":"https://openalex.org/keywords/cascade-algorithm","display_name":"Cascade algorithm","score":0.5123149},{"id":"https://openalex.org/keywords/lifting-scheme","display_name":"Lifting Scheme","score":0.47205883}],"concepts":[{"id":"https://openalex.org/C47432892","wikidata":"https://www.wikidata.org/wiki/Q831390","display_name":"Wavelet","level":2,"score":0.8508372},{"id":"https://openalex.org/C196216189","wikidata":"https://www.wikidata.org/wiki/Q2867","display_name":"Wavelet transform","level":3,"score":0.6643385},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.66012704},{"id":"https://openalex.org/C73339587","wikidata":"https://www.wikidata.org/wiki/Q1375942","display_name":"Stationary wavelet transform","level":5,"score":0.61697185},{"id":"https://openalex.org/C111350171","wikidata":"https://www.wikidata.org/wiki/Q7443700","display_name":"Second-generation wavelet transform","level":5,"score":0.576971},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.5689945},{"id":"https://openalex.org/C88829872","wikidata":"https://www.wikidata.org/wiki/Q5048176","display_name":"Cascade algorithm","level":5,"score":0.5123149},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.4839149},{"id":"https://openalex.org/C199550912","wikidata":"https://www.wikidata.org/wiki/Q3238415","display_name":"Lifting scheme","level":5,"score":0.47205883},{"id":"https://openalex.org/C46286280","wikidata":"https://www.wikidata.org/wiki/Q2414958","display_name":"Discrete wavelet transform","level":4,"score":0.46088836},{"id":"https://openalex.org/C155777637","wikidata":"https://www.wikidata.org/wiki/Q2736187","display_name":"Wavelet packet decomposition","level":4,"score":0.45349818},{"id":"https://openalex.org/C163294075","wikidata":"https://www.wikidata.org/wiki/Q581861","display_name":"Noise reduction","level":2,"score":0.4508703},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.41833764},{"id":"https://openalex.org/C11413529","wikidata":"https://www.wikidata.org/wiki/Q8366","display_name":"Algorithm","level":1,"score":0.39418274}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/tcsvt.2005.844456","pdf_url":null,"source":{"id":"https://openalex.org/S115173108","display_name":"IEEE Transactions on Circuits and Systems for Video Technology","issn_l":"1051-8215","issn":["1051-8215","1558-2205"],"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":true,"is_core":true,"host_organization":"https://openalex.org/P4310319808","host_organization_name":"Institute of Electrical and Electronics Engineers","host_organization_lineage":["https://openalex.org/P4310319808"],"host_organization_lineage_names":["Institute of Electrical and Electronics Engineers"],"type":"journal"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[{"display_name":"Reduced inequalities","score":0.56,"id":"https://metadata.un.org/sdg/10"}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":35,"referenced_works":["https://openalex.org/W1480063481","https://openalex.org/W1567306314","https://openalex.org/W1890783052","https://openalex.org/W2004217976","https://openalex.org/W2053691921","https://openalex.org/W2065391104","https://openalex.org/W2079724595","https://openalex.org/W2098914003","https://openalex.org/W2099111195","https://openalex.org/W2102773781","https://openalex.org/W2108207814","https://openalex.org/W2119957939","https://openalex.org/W2120436834","https://openalex.org/W2125527601","https://openalex.org/W2132984323","https://openalex.org/W2134680040","https://openalex.org/W2134929491","https://openalex.org/W2136017820","https://openalex.org/W2139026121","https://openalex.org/W2139282590","https://openalex.org/W2142085250","https://openalex.org/W2146842127","https://openalex.org/W2149072817","https://openalex.org/W2151308902","https://openalex.org/W2153168413","https://openalex.org/W2153732405","https://openalex.org/W2158252006","https://openalex.org/W2163612361","https://openalex.org/W2168638869","https://openalex.org/W3005363104","https://openalex.org/W4214540058","https://openalex.org/W4230675943","https://openalex.org/W4255521522","https://openalex.org/W59771946","https://openalex.org/W633114123"],"related_works":["https://openalex.org/W68308810","https://openalex.org/W2391053410","https://openalex.org/W2358271565","https://openalex.org/W2274421086","https://openalex.org/W2085792030","https://openalex.org/W2046633342","https://openalex.org/W1983773606","https://openalex.org/W1918078477","https://openalex.org/W1584452409","https://openalex.org/W1506615375"],"abstract_inverted_index":{"In":[0],"this":[1],"paper,":[2],"a":[3,75,151,184],"wavelet-based":[4],"multiscale":[5],"linear":[6],"minimum":[7],"mean":[8],"square-error":[9],"estimation":[10],"(LMMSE)":[11],"scheme":[12,31,106,194],"for":[13],"image":[14],"denoising":[15,133,198],"is":[16,32,41,53,107],"proposed,":[17],"and":[18,77,123,163,182],"the":[19,22,29,45,57,65,68,81,85,90,94,104,110,113,118,124,132,140,144,158,167,178,192],"determination":[20],"of":[21,61,103,112,153,187],"optimal":[23,136],"wavelet":[24,37,47,114,137,154,159,168,179],"basis":[25],"with":[26,84],"respect":[27],"to":[28,80,130],"proposed":[30,105,129,193],"also":[33],"discussed.":[34],"The":[35,101,135],"overcomplete":[36],"expansion":[38],"(OWE),":[39],"which":[40,176],"more":[42],"effective":[43],"than":[44],"orthogonal":[46],"transform":[48],"(OWT)":[49],"in":[50],"noise":[51],"reduction,":[52],"used.":[54],"To":[55,156],"explore":[56],"strong":[58],"interscale":[59,91],"dependencies":[60],"OWE,":[62],"we":[63,165],"combine":[64],"pixels":[66],"at":[67,98],"same":[69],"spatial":[70],"location":[71],"across":[72],"scales":[73],"as":[74],"vector":[76],"apply":[78],"LMMSE":[79,86],"vector.":[82],"Compared":[83],"within":[87],"each":[88],"scale,":[89],"model":[92],"exploits":[93,177],"dependency":[95,181],"information":[96,120],"distributed":[97],"adjacent":[99],"scales.":[100],"performance":[102],"dependent":[108],"on":[109],"selection":[111],"bases.":[115,155],"Two":[116],"criteria,":[117],"signal":[119],"extraction":[121],"criterion":[122],"distribution":[125],"error":[126],"criterion,":[127],"are":[128],"measure":[131],"performance.":[134],"that":[138,191],"achieves":[139],"best":[141],"tradeoff":[142],"between":[143],"two":[145],"criteria":[146],"can":[147],"be":[148],"determined":[149],"from":[150],"library":[152],"estimate":[157],"coefficient":[160],"statistics":[161],"precisely":[162],"adaptively,":[164],"classify":[166],"coefficients":[169],"into":[170],"different":[171],"clusters":[172],"by":[173],"context":[174],"modeling,":[175],"intrascale":[180],"yields":[183],"local":[185],"discrimination":[186],"images.":[188],"Experiments":[189],"show":[190],"outperforms":[195],"some":[196],"existing":[197],"methods.":[199]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W2054855363","counts_by_year":[{"year":2024,"cited_by_count":3},{"year":2023,"cited_by_count":2},{"year":2022,"cited_by_count":7},{"year":2021,"cited_by_count":6},{"year":2020,"cited_by_count":3},{"year":2019,"cited_by_count":4},{"year":2018,"cited_by_count":3},{"year":2017,"cited_by_count":6},{"year":2016,"cited_by_count":5},{"year":2015,"cited_by_count":5},{"year":2014,"cited_by_count":9},{"year":2013,"cited_by_count":9},{"year":2012,"cited_by_count":9}],"updated_date":"2025-04-18T07:18:25.330860","created_date":"2016-06-24"}