{"id":"https://openalex.org/W4389987942","doi":"https://doi.org/10.1109/tcss.2023.3331366","title":"Robust Weighted Low-Rank Tensor Approximation for Multiview Clustering With Mixed Noise","display_name":"Robust Weighted Low-Rank Tensor Approximation for Multiview Clustering With Mixed Noise","publication_year":2023,"publication_date":"2023-12-20","ids":{"openalex":"https://openalex.org/W4389987942","doi":"https://doi.org/10.1109/tcss.2023.3331366"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/tcss.2023.3331366","pdf_url":null,"source":{"id":"https://openalex.org/S2490693980","display_name":"IEEE Transactions on Computational Social Systems","issn_l":"2329-924X","issn":["2329-924X","2373-7476"],"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":true,"is_core":true,"host_organization":"https://openalex.org/P4310319808","host_organization_name":"Institute of Electrical and Electronics Engineers","host_organization_lineage":["https://openalex.org/P4310319808"],"host_organization_lineage_names":["Institute of Electrical and Electronics Engineers"],"type":"journal"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"journal-article","indexed_in":["crossref"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"https://figshare.com/articles/journal_contribution/Robust_Weighted_Low-Rank_Tensor_Approximation_for_Multiview_Clustering_With_Mixed_Noise/24886728/1/files/43795224.pdf","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5101732454","display_name":"Xinyu Pu","orcid":"https://orcid.org/0009-0005-1203-7382"},"institutions":[{"id":"https://openalex.org/I142108993","display_name":"Southwest University","ror":"https://ror.org/01kj4z117","country_code":"CN","type":"funder","lineage":["https://openalex.org/I142108993"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Xinyu Pu","raw_affiliation_strings":["College of Electronic and Information Engineering, Southwest University, Chongqing, China"],"affiliations":[{"raw_affiliation_string":"College of Electronic and Information Engineering, Southwest University, Chongqing, China","institution_ids":["https://openalex.org/I142108993"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5057428910","display_name":"Hangjun Che","orcid":"https://orcid.org/0000-0002-8930-0039"},"institutions":[{"id":"https://openalex.org/I142108993","display_name":"Southwest University","ror":"https://ror.org/01kj4z117","country_code":"CN","type":"funder","lineage":["https://openalex.org/I142108993"]},{"id":"https://openalex.org/I2799449666","display_name":"State Ethnic Affairs Commission","ror":"https://ror.org/01p9g6b97","country_code":"CN","type":"government","lineage":["https://openalex.org/I2799449666"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Hangjun Che","raw_affiliation_strings":["Chongqing Key Laboratory of Nonlinear Circuits and Intelligent Information Processing, College of Electronic and Information Engineering, Southwest University, Chongqing, China","Key Laboratory of Cyber-Physical Fusion Intelligent Computing (South-Central Minzu University), State Ethnic Affairs Commission, Wuhan, China"],"affiliations":[{"raw_affiliation_string":"Chongqing Key Laboratory of Nonlinear Circuits and Intelligent Information Processing, College of Electronic and Information Engineering, Southwest University, Chongqing, China","institution_ids":["https://openalex.org/I142108993"]},{"raw_affiliation_string":"Key Laboratory of Cyber-Physical Fusion Intelligent Computing (South-Central Minzu University), State Ethnic Affairs Commission, Wuhan, China","institution_ids":["https://openalex.org/I2799449666"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5042367285","display_name":"Baicheng Pan","orcid":"https://orcid.org/0009-0002-9584-7978"},"institutions":[{"id":"https://openalex.org/I142108993","display_name":"Southwest University","ror":"https://ror.org/01kj4z117","country_code":"CN","type":"funder","lineage":["https://openalex.org/I142108993"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Baicheng Pan","raw_affiliation_strings":["College of Electronic and Information Engineering, Southwest University, Chongqing, China"],"affiliations":[{"raw_affiliation_string":"College of Electronic and Information Engineering, Southwest University, Chongqing, China","institution_ids":["https://openalex.org/I142108993"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5054221120","display_name":"Man-Fai Leung","orcid":"https://orcid.org/0000-0002-7753-0136"},"institutions":[{"id":"https://openalex.org/I51216347","display_name":"Anglia Ruskin University","ror":"https://ror.org/0009t4v78","country_code":"GB","type":"funder","lineage":["https://openalex.org/I51216347"]}],"countries":["GB"],"is_corresponding":false,"raw_author_name":"Man-Fai Leung","raw_affiliation_strings":["School of Computing and Information Science, Faculty of Science and Engineering, Anglia Ruskin University, Cambridge, U.K."],"affiliations":[{"raw_affiliation_string":"School of Computing and Information Science, Faculty of Science and Engineering, Anglia Ruskin University, Cambridge, U.K.","institution_ids":["https://openalex.org/I51216347"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5048286444","display_name":"Shiping Wen","orcid":null},"institutions":[{"id":"https://openalex.org/I114017466","display_name":"University of Technology Sydney","ror":"https://ror.org/03f0f6041","country_code":"AU","type":"funder","lineage":["https://openalex.org/I114017466"]}],"countries":["AU"],"is_corresponding":false,"raw_author_name":"Shiping Wen","raw_affiliation_strings":["University of Technology Sydney, Ultimo, NSW, Australia"],"affiliations":[{"raw_affiliation_string":"University of Technology Sydney, Ultimo, NSW, Australia","institution_ids":["https://openalex.org/I114017466"]}]}],"institution_assertions":[],"countries_distinct_count":3,"institutions_distinct_count":4,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":3.968,"has_fulltext":false,"cited_by_count":11,"citation_normalized_percentile":{"value":0.996667,"is_in_top_1_percent":true,"is_in_top_10_percent":true},"cited_by_percentile_year":{"min":95,"max":96},"biblio":{"volume":"11","issue":"3","first_page":"3268","last_page":"3285"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T12303","display_name":"Tensor decomposition and applications","score":0.9975,"subfield":{"id":"https://openalex.org/subfields/2605","display_name":"Computational Mathematics"},"field":{"id":"https://openalex.org/fields/26","display_name":"Mathematics"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T12303","display_name":"Tensor decomposition and applications","score":0.9975,"subfield":{"id":"https://openalex.org/subfields/2605","display_name":"Computational Mathematics"},"field":{"id":"https://openalex.org/fields/26","display_name":"Mathematics"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10500","display_name":"Sparse and Compressive Sensing Techniques","score":0.9968,"subfield":{"id":"https://openalex.org/subfields/2206","display_name":"Computational Mechanics"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10860","display_name":"Speech and Audio Processing","score":0.9925,"subfield":{"id":"https://openalex.org/subfields/1711","display_name":"Signal Processing"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/robustness","display_name":"Robustness","score":0.6491754},{"id":"https://openalex.org/keywords/rank","display_name":"Rank (graph theory)","score":0.50654924}],"concepts":[{"id":"https://openalex.org/C73555534","wikidata":"https://www.wikidata.org/wiki/Q622825","display_name":"Cluster analysis","level":2,"score":0.770015},{"id":"https://openalex.org/C79337645","wikidata":"https://www.wikidata.org/wiki/Q779824","display_name":"Outlier","level":2,"score":0.6689451},{"id":"https://openalex.org/C63479239","wikidata":"https://www.wikidata.org/wiki/Q7353546","display_name":"Robustness (evolution)","level":3,"score":0.6491754},{"id":"https://openalex.org/C99498987","wikidata":"https://www.wikidata.org/wiki/Q2210247","display_name":"Noise (video)","level":3,"score":0.5566846},{"id":"https://openalex.org/C164226766","wikidata":"https://www.wikidata.org/wiki/Q7293202","display_name":"Rank (graph theory)","level":2,"score":0.50654924},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.46968678},{"id":"https://openalex.org/C155281189","wikidata":"https://www.wikidata.org/wiki/Q3518150","display_name":"Tensor (intrinsic definition)","level":2,"score":0.45999655},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.45000932},{"id":"https://openalex.org/C11413529","wikidata":"https://www.wikidata.org/wiki/Q8366","display_name":"Algorithm","level":1,"score":0.4482423},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.42822757},{"id":"https://openalex.org/C148764684","wikidata":"https://www.wikidata.org/wiki/Q621751","display_name":"Approximation algorithm","level":2,"score":0.4255635},{"id":"https://openalex.org/C49344536","wikidata":"https://www.wikidata.org/wiki/Q726441","display_name":"Cauchy distribution","level":2,"score":0.42116725},{"id":"https://openalex.org/C114614502","wikidata":"https://www.wikidata.org/wiki/Q76592","display_name":"Combinatorics","level":1,"score":0.25528145},{"id":"https://openalex.org/C202444582","wikidata":"https://www.wikidata.org/wiki/Q837863","display_name":"Pure mathematics","level":1,"score":0.1662263},{"id":"https://openalex.org/C105795698","wikidata":"https://www.wikidata.org/wiki/Q12483","display_name":"Statistics","level":1,"score":0.1651085},{"id":"https://openalex.org/C115961682","wikidata":"https://www.wikidata.org/wiki/Q860623","display_name":"Image (mathematics)","level":2,"score":0.107966214},{"id":"https://openalex.org/C55493867","wikidata":"https://www.wikidata.org/wiki/Q7094","display_name":"Biochemistry","level":1,"score":0.0},{"id":"https://openalex.org/C185592680","wikidata":"https://www.wikidata.org/wiki/Q2329","display_name":"Chemistry","level":0,"score":0.0},{"id":"https://openalex.org/C104317684","wikidata":"https://www.wikidata.org/wiki/Q7187","display_name":"Gene","level":2,"score":0.0}],"mesh":[],"locations_count":2,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/tcss.2023.3331366","pdf_url":null,"source":{"id":"https://openalex.org/S2490693980","display_name":"IEEE Transactions on Computational Social Systems","issn_l":"2329-924X","issn":["2329-924X","2373-7476"],"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":true,"is_core":true,"host_organization":"https://openalex.org/P4310319808","host_organization_name":"Institute of Electrical and Electronics Engineers","host_organization_lineage":["https://openalex.org/P4310319808"],"host_organization_lineage_names":["Institute of Electrical and Electronics Engineers"],"type":"journal"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},{"is_oa":true,"landing_page_url":"https://figshare.com/articles/journal_contribution/Robust_Weighted_Low-Rank_Tensor_Approximation_for_Multiview_Clustering_With_Mixed_Noise/24886728","pdf_url":"https://figshare.com/articles/journal_contribution/Robust_Weighted_Low-Rank_Tensor_Approximation_for_Multiview_Clustering_With_Mixed_Noise/24886728/1/files/43795224.pdf","source":{"id":"https://openalex.org/S4306402621","display_name":"INDIGO (University of Illinois at Chicago)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I39422238","host_organization_name":"University of Illinois Chicago","host_organization_lineage":["https://openalex.org/I39422238"],"host_organization_lineage_names":["University of Illinois Chicago"],"type":"repository"},"license":"cc-by-nc-nd","license_id":"https://openalex.org/licenses/cc-by-nc-nd","version":"publishedVersion","is_accepted":true,"is_published":true}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://figshare.com/articles/journal_contribution/Robust_Weighted_Low-Rank_Tensor_Approximation_for_Multiview_Clustering_With_Mixed_Noise/24886728","pdf_url":"https://figshare.com/articles/journal_contribution/Robust_Weighted_Low-Rank_Tensor_Approximation_for_Multiview_Clustering_With_Mixed_Noise/24886728/1/files/43795224.pdf","source":{"id":"https://openalex.org/S4306402621","display_name":"INDIGO (University of Illinois at Chicago)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I39422238","host_organization_name":"University of Illinois Chicago","host_organization_lineage":["https://openalex.org/I39422238"],"host_organization_lineage_names":["University of Illinois Chicago"],"type":"repository"},"license":"cc-by-nc-nd","license_id":"https://openalex.org/licenses/cc-by-nc-nd","version":"publishedVersion","is_accepted":true,"is_published":true},"sustainable_development_goals":[{"score":0.48,"display_name":"Climate action","id":"https://metadata.un.org/sdg/13"}],"grants":[{"funder":"https://openalex.org/F4320321001","funder_display_name":"National Natural Science Foundation of China","award_id":"62003281"}],"datasets":[],"versions":[],"referenced_works_count":51,"referenced_works":["https://openalex.org/W1175065802","https://openalex.org/W1634387560","https://openalex.org/W1907775068","https://openalex.org/W1992426838","https://openalex.org/W1993962865","https://openalex.org/W1997201895","https://openalex.org/W201974436","https://openalex.org/W2043571470","https://openalex.org/W2081297271","https://openalex.org/W2095757522","https://openalex.org/W2126607811","https://openalex.org/W2163352848","https://openalex.org/W2197707282","https://openalex.org/W2565835729","https://openalex.org/W2724686744","https://openalex.org/W2737186053","https://openalex.org/W2741998188","https://openalex.org/W2758611985","https://openalex.org/W2787885212","https://openalex.org/W2894142921","https://openalex.org/W2901373116","https://openalex.org/W2903254834","https://openalex.org/W2921065608","https://openalex.org/W2921483425","https://openalex.org/W2949579163","https://openalex.org/W2963341618","https://openalex.org/W2974585710","https://openalex.org/W297461772","https://openalex.org/W2982156295","https://openalex.org/W2998004380","https://openalex.org/W3005916310","https://openalex.org/W3015899030","https://openalex.org/W3024343454","https://openalex.org/W3093538588","https://openalex.org/W3119959254","https://openalex.org/W3135754249","https://openalex.org/W3140079845","https://openalex.org/W3165231040","https://openalex.org/W3168316785","https://openalex.org/W3217558487","https://openalex.org/W4220873374","https://openalex.org/W4280531754","https://openalex.org/W4282835295","https://openalex.org/W4282934663","https://openalex.org/W4297141021","https://openalex.org/W4310991244","https://openalex.org/W4312973985","https://openalex.org/W4320480761","https://openalex.org/W4353093926","https://openalex.org/W4385287043","https://openalex.org/W4385489679"],"related_works":["https://openalex.org/W4290987221","https://openalex.org/W4286971555","https://openalex.org/W3199841771","https://openalex.org/W2950186459","https://openalex.org/W2897298721","https://openalex.org/W2569661359","https://openalex.org/W2242624680","https://openalex.org/W2216309014","https://openalex.org/W2170114491","https://openalex.org/W2136127937"],"abstract_inverted_index":{"Multiview":[0],"clustering":[1,17,37],"performs":[2],"grouping":[3],"a":[4,34,55,95],"set":[5],"of":[6,140,172,178],"objects":[7],"by":[8,26],"utilizing":[9],"complementary":[10],"information":[11],"from":[12],"multiple":[13],"views.":[14],"Unfortunately,":[15],"the":[16,22,52,74,110,136,147,159,175,179,184,188],"performance":[18,53,85],"degenerates":[19],"dramatically":[20],"if":[21],"views":[23],"are":[24,120],"corrupted":[25],"noise.":[27],"To":[28],"overcome":[29],"this":[30],"limitation,":[31],"we":[32],"propose":[33],"robust":[35],"multiview":[36,165],"approach":[38,161,190],"based":[39,134],"on":[40,135,153,169],"weighted":[41,60,64],"low-rank":[42,56,65],"tensor":[43,66],"approximation":[44,57,67],"and":[45,59,73,109,117,126],"noise":[46,173,186],"separation.":[47],"The":[48,63],"proposed":[49,149,160,180,189],"model":[50],"improves":[51],"through":[54],"function":[58],"singular":[61,80],"values.":[62],"method":[68,139],"considers":[69],"both":[70],"prior":[71],"knowledge":[72],"physical":[75],"meanings":[76],"associated":[77],"with":[78],"different":[79],"values,":[81],"leading":[82],"to":[83,91,106,122,145,194],"superior":[84,176,193],"in":[86,183],"capturing":[87],"high-order":[88],"correlations.":[89],"Additionally,":[90],"eliminate":[92],"mixed":[93,185],"noise,":[94],"novel":[96],"l":[99,113],"Cauchy,1":[102],"norm":[103],"is":[104,143,191],"developed":[105],"handle":[107,123],"outliers,":[108],"xmlns:xlink=\"http://www.w3.org/1999/xlink\">1":[116],"Frobenius":[118],"norms":[119],"used":[121],"random":[124],"corruptions":[125],"slight":[127],"perturbations,":[128],"respectively.":[129],"A":[130],"high-efficiency":[131],"optimization":[132],"algorithm":[133],"alternating":[137],"direction":[138],"multipliers":[141],"(ADMM)":[142],"designed":[144],"address":[146],"challenging":[148],"model.":[150],"Experimental":[151],"results":[152],"nine":[154],"real-world":[155],"datasets":[156],"show":[157],"that":[158],"outperforms":[162],"eight":[163],"state-of-the-art":[164],"methods.":[166,196],"Furthermore,":[167],"experiments":[168],"various":[170],"kinds":[171],"demonstrate":[174],"robustness":[177],"approach.":[181],"Especially,":[182],"condition,":[187],"significantly":[192],"other":[195]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4389987942","counts_by_year":[{"year":2025,"cited_by_count":1},{"year":2024,"cited_by_count":9},{"year":2023,"cited_by_count":1}],"updated_date":"2025-05-01T07:42:34.936812","created_date":"2023-12-21"}