{"id":"https://openalex.org/W3215483764","doi":"https://doi.org/10.1109/tce.2021.3131943","title":"A Hybrid of Interactive Learning and Predictive Modeling for Occupancy Estimation in Smart Buildings","display_name":"A Hybrid of Interactive Learning and Predictive Modeling for Occupancy Estimation in Smart Buildings","publication_year":2021,"publication_date":"2021-11-01","ids":{"openalex":"https://openalex.org/W3215483764","doi":"https://doi.org/10.1109/tce.2021.3131943","mag":"3215483764"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/tce.2021.3131943","pdf_url":null,"source":{"id":"https://openalex.org/S126824455","display_name":"IEEE Transactions on Consumer Electronics","issn_l":"0098-3063","issn":["0098-3063","1558-4127"],"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":true,"is_core":true,"host_organization":"https://openalex.org/P4310319808","host_organization_name":"Institute of Electrical and Electronics Engineers","host_organization_lineage":["https://openalex.org/P4310319808"],"host_organization_lineage_names":["Institute of Electrical and Electronics Engineers"],"type":"journal"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"journal-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5040959944","display_name":"Jiaxun Guo","orcid":"https://orcid.org/0000-0002-6110-4562"},"institutions":[{"id":"https://openalex.org/I60158472","display_name":"Concordia University","ror":"https://ror.org/0420zvk78","country_code":"CA","type":"funder","lineage":["https://openalex.org/I60158472"]}],"countries":["CA"],"is_corresponding":false,"raw_author_name":"Jiaxun Guo","raw_affiliation_strings":["Concordia Institute for Information Systems Engineering, Concordia University, Montreal, Canada"],"affiliations":[{"raw_affiliation_string":"Concordia Institute for Information Systems Engineering, Concordia University, Montreal, Canada","institution_ids":["https://openalex.org/I60158472"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5008962576","display_name":"Manar Amayri","orcid":"https://orcid.org/0000-0002-5610-8833"},"institutions":[{"id":"https://openalex.org/I106785703","display_name":"Institut polytechnique de Grenoble","ror":"https://ror.org/05sbt2524","country_code":"FR","type":"education","lineage":["https://openalex.org/I106785703","https://openalex.org/I899635006"]}],"countries":["FR"],"is_corresponding":false,"raw_author_name":"Manar Amayri","raw_affiliation_strings":["Grenoble Institute of Technology, Grenoble, Ense3, France"],"affiliations":[{"raw_affiliation_string":"Grenoble Institute of Technology, Grenoble, Ense3, France","institution_ids":["https://openalex.org/I106785703"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5090600716","display_name":"Nizar Bouguila","orcid":"https://orcid.org/0000-0001-7224-7940"},"institutions":[{"id":"https://openalex.org/I60158472","display_name":"Concordia University","ror":"https://ror.org/0420zvk78","country_code":"CA","type":"funder","lineage":["https://openalex.org/I60158472"]}],"countries":["CA"],"is_corresponding":false,"raw_author_name":"Nizar Bouguila","raw_affiliation_strings":["Concordia Institute for Information Systems Engineering, Concordia University, Montreal, Canada"],"affiliations":[{"raw_affiliation_string":"Concordia Institute for Information Systems Engineering, Concordia University, Montreal, Canada","institution_ids":["https://openalex.org/I60158472"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5056455910","display_name":"Wentao Fan","orcid":"https://orcid.org/0000-0001-6694-7289"},"institutions":[{"id":"https://openalex.org/I119045251","display_name":"Huaqiao University","ror":"https://ror.org/03frdh605","country_code":"CN","type":"funder","lineage":["https://openalex.org/I119045251"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Wentao Fan","raw_affiliation_strings":["Department of Computer Science and Technology, Huaqiao University, Xiamen, China"],"affiliations":[{"raw_affiliation_string":"Department of Computer Science and Technology, Huaqiao University, Xiamen, China","institution_ids":["https://openalex.org/I119045251"]}]}],"institution_assertions":[],"countries_distinct_count":3,"institutions_distinct_count":3,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":1.012,"has_fulltext":false,"cited_by_count":13,"citation_normalized_percentile":{"value":0.734514,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":89,"max":90},"biblio":{"volume":"67","issue":"4","first_page":"285","last_page":"293"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T12120","display_name":"Air Quality Monitoring and Forecasting","score":0.9917,"subfield":{"id":"https://openalex.org/subfields/2305","display_name":"Environmental Engineering"},"field":{"id":"https://openalex.org/fields/23","display_name":"Environmental Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T12120","display_name":"Air Quality Monitoring and Forecasting","score":0.9917,"subfield":{"id":"https://openalex.org/subfields/2305","display_name":"Environmental Engineering"},"field":{"id":"https://openalex.org/fields/23","display_name":"Environmental Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10603","display_name":"Smart Grid Energy Management","score":0.9836,"subfield":{"id":"https://openalex.org/subfields/2208","display_name":"Electrical and Electronic Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11220","display_name":"Water Systems and Optimization","score":0.9806,"subfield":{"id":"https://openalex.org/subfields/2205","display_name":"Civil and Structural Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/occupancy","display_name":"Occupancy","score":0.5902449}],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.7034321},{"id":"https://openalex.org/C61224824","wikidata":"https://www.wikidata.org/wiki/Q2260434","display_name":"Mixture model","level":2,"score":0.6191675},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.6039854},{"id":"https://openalex.org/C160331591","wikidata":"https://www.wikidata.org/wiki/Q7075743","display_name":"Occupancy","level":2,"score":0.5902449},{"id":"https://openalex.org/C2779343474","wikidata":"https://www.wikidata.org/wiki/Q3109175","display_name":"Context (archaeology)","level":2,"score":0.55987126},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.5428756},{"id":"https://openalex.org/C2776214188","wikidata":"https://www.wikidata.org/wiki/Q408386","display_name":"Inference","level":2,"score":0.48182812},{"id":"https://openalex.org/C107673813","wikidata":"https://www.wikidata.org/wiki/Q812534","display_name":"Bayesian probability","level":2,"score":0.4773293},{"id":"https://openalex.org/C169214877","wikidata":"https://www.wikidata.org/wiki/Q981016","display_name":"Dirichlet distribution","level":3,"score":0.47342852},{"id":"https://openalex.org/C160234255","wikidata":"https://www.wikidata.org/wiki/Q812535","display_name":"Bayesian inference","level":3,"score":0.46867022},{"id":"https://openalex.org/C67186912","wikidata":"https://www.wikidata.org/wiki/Q367664","display_name":"Data modeling","level":2,"score":0.44527346},{"id":"https://openalex.org/C61326573","wikidata":"https://www.wikidata.org/wiki/Q1496376","display_name":"Gaussian process","level":3,"score":0.42657608},{"id":"https://openalex.org/C163716315","wikidata":"https://www.wikidata.org/wiki/Q901177","display_name":"Gaussian","level":2,"score":0.42163205},{"id":"https://openalex.org/C124101348","wikidata":"https://www.wikidata.org/wiki/Q172491","display_name":"Data mining","level":1,"score":0.3900776},{"id":"https://openalex.org/C127413603","wikidata":"https://www.wikidata.org/wiki/Q11023","display_name":"Engineering","level":0,"score":0.18413085},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.11470628},{"id":"https://openalex.org/C77088390","wikidata":"https://www.wikidata.org/wiki/Q8513","display_name":"Database","level":1,"score":0.09796962},{"id":"https://openalex.org/C170154142","wikidata":"https://www.wikidata.org/wiki/Q150737","display_name":"Architectural engineering","level":1,"score":0.0},{"id":"https://openalex.org/C151730666","wikidata":"https://www.wikidata.org/wiki/Q7205","display_name":"Paleontology","level":1,"score":0.0},{"id":"https://openalex.org/C134306372","wikidata":"https://www.wikidata.org/wiki/Q7754","display_name":"Mathematical analysis","level":1,"score":0.0},{"id":"https://openalex.org/C86803240","wikidata":"https://www.wikidata.org/wiki/Q420","display_name":"Biology","level":0,"score":0.0},{"id":"https://openalex.org/C182310444","wikidata":"https://www.wikidata.org/wiki/Q1332643","display_name":"Boundary value problem","level":2,"score":0.0},{"id":"https://openalex.org/C121332964","wikidata":"https://www.wikidata.org/wiki/Q413","display_name":"Physics","level":0,"score":0.0},{"id":"https://openalex.org/C62520636","wikidata":"https://www.wikidata.org/wiki/Q944","display_name":"Quantum mechanics","level":1,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/tce.2021.3131943","pdf_url":null,"source":{"id":"https://openalex.org/S126824455","display_name":"IEEE Transactions on Consumer Electronics","issn_l":"0098-3063","issn":["0098-3063","1558-4127"],"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":true,"is_core":true,"host_organization":"https://openalex.org/P4310319808","host_organization_name":"Institute of Electrical and Electronics Engineers","host_organization_lineage":["https://openalex.org/P4310319808"],"host_organization_lineage_names":["Institute of Electrical and Electronics Engineers"],"type":"journal"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[{"display_name":"Sustainable cities and communities","id":"https://metadata.un.org/sdg/11","score":0.57}],"grants":[{"funder":"https://openalex.org/F4320320883","funder_display_name":"Agence Nationale de la Recherche","award_id":"11-EQPX-00"},{"funder":"https://openalex.org/F4320321001","funder_display_name":"National Natural Science Foundation of China","award_id":"61876068"},{"funder":"https://openalex.org/F4320334593","funder_display_name":"Natural Sciences and Engineering Research Council of Canada","award_id":null}],"datasets":[],"versions":[],"referenced_works_count":37,"referenced_works":["https://openalex.org/W1601795611","https://openalex.org/W2003244299","https://openalex.org/W2096784803","https://openalex.org/W2120743933","https://openalex.org/W2133703553","https://openalex.org/W2142475676","https://openalex.org/W2143538196","https://openalex.org/W2157487910","https://openalex.org/W2169714360","https://openalex.org/W2475772748","https://openalex.org/W2617269183","https://openalex.org/W2745605851","https://openalex.org/W2745737791","https://openalex.org/W2783596173","https://openalex.org/W2796394553","https://openalex.org/W2902756306","https://openalex.org/W2908779501","https://openalex.org/W2941028033","https://openalex.org/W2945004371","https://openalex.org/W2945718439","https://openalex.org/W2946808087","https://openalex.org/W2952498592","https://openalex.org/W2964955876","https://openalex.org/W2971328001","https://openalex.org/W2985925324","https://openalex.org/W2989367269","https://openalex.org/W3000090293","https://openalex.org/W3025397688","https://openalex.org/W3031361451","https://openalex.org/W3040863237","https://openalex.org/W3056417032","https://openalex.org/W3103402818","https://openalex.org/W3120775420","https://openalex.org/W3128401974","https://openalex.org/W3153578625","https://openalex.org/W4230586052","https://openalex.org/W4250589301"],"related_works":["https://openalex.org/W74847246","https://openalex.org/W4282043467","https://openalex.org/W4255225174","https://openalex.org/W3093197249","https://openalex.org/W2924917467","https://openalex.org/W2143508933","https://openalex.org/W2105697914","https://openalex.org/W2035893370","https://openalex.org/W1992295166","https://openalex.org/W1882901045"],"abstract_inverted_index":{"This":[0],"paper":[1],"proposes":[2],"a":[3,14,76,98,105,133,141,157],"statistical":[4],"learning":[5,85],"approach":[6,78,107],"for":[7,184],"estimating":[8],"occupancy":[9,54],"in":[10],"smart":[11],"buildings":[12],"using":[13],"set":[15],"of":[16,44,67,93,101,121,152,164,176],"small":[17,202],"and":[18,59,104,188],"simple":[19],"nonintrusive":[20],"sensors":[21,29,178],"that":[22,30,40,87,108,137,192],"can":[23],"be":[24],"viewed":[25],"as":[26,34,37],"alternatives":[27],"to":[28,89,144],"are":[31,48],"sometimes":[32],"perceived":[33],"invasive":[35],"such":[36],"cameras.":[38],"In":[39],"context,":[41],"large":[42,52],"amount":[43],"labelled":[45],"training":[46,91,203],"data":[47,55,92,187,190],"required.":[49],"However,":[50],"labelling":[51],"scale":[53],"is":[56,115,169],"time":[57],"consuming":[58],"tedious":[60],"since":[61],"it":[62],"requires":[63],"the":[64,68,81,102,118,122,145,150,165,172,177],"direct":[65],"involvement":[66,100],"users.":[69],"To":[70,135],"tackle":[71],"this":[72],"challenge,":[73],"we":[74,109,139],"consider":[75],"hybrid":[77],"based":[79,116],"on":[80,117],"recently":[82],"introduced":[83],"interactive":[84],"methodology":[86],"allows":[88],"collect":[90],"good":[94],"quality,":[95],"by":[96,148,156,171],"ensuring":[97],"minimal":[99],"user,":[103],"classification":[106,113],"have":[110,132],"developed.":[111],"The":[112,162],"part":[114],"predictive":[119,146],"distribution":[120,147,155],"generalized":[123],"Dirichlet":[124],"(GD)":[125],"mixture":[126,167],"model":[127,168],"which":[128],"unfortunately":[129],"does":[130],"not":[131],"closed-form.":[134],"alleviate":[136],"issue,":[138],"calculate":[140],"reliable":[142],"approximation":[143],"optimizing":[149],"parameters":[151],"GD":[153,166],"posterior":[154],"Bayesian":[158],"variational":[159],"inference":[160],"approach.":[161],"choice":[163],"motivated":[170],"heterogeneous":[173],"non-Gaussian":[174],"nature":[175],"outputs.":[179],"Extensive":[180],"experimental":[181],"results":[182,198],"reported":[183],"both":[185],"synthetic":[186],"real":[189],"indicate":[191],"our":[193],"method":[194],"could":[195],"achieve":[196],"promising":[197],"especially":[199],"with":[200],"extremely":[201],"data.":[204]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W3215483764","counts_by_year":[{"year":2024,"cited_by_count":6},{"year":2023,"cited_by_count":3},{"year":2022,"cited_by_count":3},{"year":2021,"cited_by_count":1}],"updated_date":"2025-03-15T22:50:35.386761","created_date":"2021-12-06"}