{"id":"https://openalex.org/W4285126762","doi":"https://doi.org/10.1109/tc.2022.3185560","title":"Enhanced Machine Learning Sketches for Network Measurements","display_name":"Enhanced Machine Learning Sketches for Network Measurements","publication_year":2022,"publication_date":"2022-07-01","ids":{"openalex":"https://openalex.org/W4285126762","doi":"https://doi.org/10.1109/tc.2022.3185560"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/tc.2022.3185560","pdf_url":null,"source":{"id":"https://openalex.org/S157670870","display_name":"IEEE Transactions on Computers","issn_l":"0018-9340","issn":["0018-9340","1557-9956","2326-3814"],"is_oa":false,"is_in_doaj":false,"is_core":true,"host_organization":"https://openalex.org/P4310319808","host_organization_name":"Institute of Electrical and Electronics Engineers","host_organization_lineage":["https://openalex.org/P4310319808"],"host_organization_lineage_names":["Institute of Electrical and Electronics Engineers"],"type":"journal"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"journal-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5054457797","display_name":"Hengrui Wang","orcid":"https://orcid.org/0000-0001-8006-4220"},"institutions":[{"id":"https://openalex.org/I20231570","display_name":"Peking University","ror":"https://ror.org/02v51f717","country_code":"CN","type":"education","lineage":["https://openalex.org/I20231570"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Hengrui Wang","raw_affiliation_strings":["National Engineering Laboratory for Big Data Analysis Technology and Application, School of Computer Science, Peking University, Beijing, China"],"affiliations":[{"raw_affiliation_string":"National Engineering Laboratory for Big Data Analysis Technology and Application, School of Computer Science, Peking University, Beijing, China","institution_ids":["https://openalex.org/I20231570"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5102855442","display_name":"Huiping Lin","orcid":"https://orcid.org/0000-0002-9432-8247"},"institutions":[{"id":"https://openalex.org/I20231570","display_name":"Peking University","ror":"https://ror.org/02v51f717","country_code":"CN","type":"education","lineage":["https://openalex.org/I20231570"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Huiping Lin","raw_affiliation_strings":["National Engineering Laboratory for Big Data Analysis Technology and Application, School of Computer Science, Peking University, Beijing, China"],"affiliations":[{"raw_affiliation_string":"National Engineering Laboratory for Big Data Analysis Technology and Application, School of Computer Science, Peking University, Beijing, China","institution_ids":["https://openalex.org/I20231570"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5108708806","display_name":"Zheng Zhong","orcid":null},"institutions":[{"id":"https://openalex.org/I20231570","display_name":"Peking University","ror":"https://ror.org/02v51f717","country_code":"CN","type":"education","lineage":["https://openalex.org/I20231570"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Zheng Zhong","raw_affiliation_strings":["National Engineering Laboratory for Big Data Analysis Technology and Application, School of Computer Science, Peking University, Beijing, China"],"affiliations":[{"raw_affiliation_string":"National Engineering Laboratory for Big Data Analysis Technology and Application, School of Computer Science, Peking University, Beijing, China","institution_ids":["https://openalex.org/I20231570"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5069277955","display_name":"Tong Yang","orcid":"https://orcid.org/0000-0003-2402-5854"},"institutions":[{"id":"https://openalex.org/I20231570","display_name":"Peking University","ror":"https://ror.org/02v51f717","country_code":"CN","type":"education","lineage":["https://openalex.org/I20231570"]},{"id":"https://openalex.org/I4210136793","display_name":"Peng Cheng Laboratory","ror":"https://ror.org/03qdqbt06","country_code":"CN","type":"facility","lineage":["https://openalex.org/I4210136793"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Tong Yang","raw_affiliation_strings":["National Engineering Laboratory for Big Data Analysis Technology and Application, School of Computer Science, Peking University, Beijing, China","Peng Cheng Laboratory, Shenzhen, Guangdong, China"],"affiliations":[{"raw_affiliation_string":"National Engineering Laboratory for Big Data Analysis Technology and Application, School of Computer Science, Peking University, Beijing, China","institution_ids":["https://openalex.org/I20231570"]},{"raw_affiliation_string":"Peng Cheng Laboratory, Shenzhen, Guangdong, China","institution_ids":["https://openalex.org/I4210136793"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5049422969","display_name":"Muhammad Shahzad","orcid":"https://orcid.org/0000-0003-4342-7875"},"institutions":[{"id":"https://openalex.org/I137902535","display_name":"North Carolina State University","ror":"https://ror.org/04tj63d06","country_code":"US","type":"education","lineage":["https://openalex.org/I137902535"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Muhammad Shahzad","raw_affiliation_strings":["North Carolina State University, Raleigh, NC, USA"],"affiliations":[{"raw_affiliation_string":"North Carolina State University, Raleigh, NC, USA","institution_ids":["https://openalex.org/I137902535"]}]}],"institution_assertions":[],"countries_distinct_count":2,"institutions_distinct_count":3,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":0.0,"has_fulltext":false,"cited_by_count":0,"citation_normalized_percentile":{"value":0.0,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":0,"max":60},"biblio":{"volume":"72","issue":"4","first_page":"957","last_page":"970"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T11598","display_name":"Internet Traffic Analysis and Secure E-voting","score":0.9999,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T11598","display_name":"Internet Traffic Analysis and Secure E-voting","score":0.9999,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10400","display_name":"Network Security and Intrusion Detection","score":0.9994,"subfield":{"id":"https://openalex.org/subfields/1705","display_name":"Computer Networks and Communications"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T12127","display_name":"Software System Performance and Reliability","score":0.9984,"subfield":{"id":"https://openalex.org/subfields/1705","display_name":"Computer Networks and Communications"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[],"concepts":[{"id":"https://openalex.org/C45357846","wikidata":"https://www.wikidata.org/wiki/Q2001982","display_name":"Notation","level":2,"score":0.77044284},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.75620115},{"id":"https://openalex.org/C2780009758","wikidata":"https://www.wikidata.org/wiki/Q6804172","display_name":"Measure (data warehouse)","level":2,"score":0.58739495},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.50270057},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.48658836},{"id":"https://openalex.org/C38349280","wikidata":"https://www.wikidata.org/wiki/Q1434290","display_name":"Flow (mathematics)","level":2,"score":0.4807477},{"id":"https://openalex.org/C136197465","wikidata":"https://www.wikidata.org/wiki/Q1729295","display_name":"Variety (cybernetics)","level":2,"score":0.46966136},{"id":"https://openalex.org/C114809511","wikidata":"https://www.wikidata.org/wiki/Q1412924","display_name":"Flow network","level":2,"score":0.41761032},{"id":"https://openalex.org/C80444323","wikidata":"https://www.wikidata.org/wiki/Q2878974","display_name":"Theoretical computer science","level":1,"score":0.35040206},{"id":"https://openalex.org/C124101348","wikidata":"https://www.wikidata.org/wiki/Q172491","display_name":"Data mining","level":1,"score":0.30771607},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.14898667},{"id":"https://openalex.org/C94375191","wikidata":"https://www.wikidata.org/wiki/Q11205","display_name":"Arithmetic","level":1,"score":0.08697677},{"id":"https://openalex.org/C2524010","wikidata":"https://www.wikidata.org/wiki/Q8087","display_name":"Geometry","level":1,"score":0.0},{"id":"https://openalex.org/C126255220","wikidata":"https://www.wikidata.org/wiki/Q141495","display_name":"Mathematical optimization","level":1,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/tc.2022.3185560","pdf_url":null,"source":{"id":"https://openalex.org/S157670870","display_name":"IEEE Transactions on Computers","issn_l":"0018-9340","issn":["0018-9340","1557-9956","2326-3814"],"is_oa":false,"is_in_doaj":false,"is_core":true,"host_organization":"https://openalex.org/P4310319808","host_organization_name":"Institute of Electrical and Electronics Engineers","host_organization_lineage":["https://openalex.org/P4310319808"],"host_organization_lineage_names":["Institute of Electrical and Electronics Engineers"],"type":"journal"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[],"grants":[{"funder":"https://openalex.org/F4320321001","funder_display_name":"National Natural Science Foundation of China","award_id":"61832001"},{"funder":"https://openalex.org/F4320321001","funder_display_name":"National Natural Science Foundation of China","award_id":"U20A20179"}],"datasets":[],"versions":[],"referenced_works_count":32,"referenced_works":["https://openalex.org/W151938044","https://openalex.org/W1555239021","https://openalex.org/W1785933978","https://openalex.org/W2025051251","https://openalex.org/W2037536649","https://openalex.org/W2049282244","https://openalex.org/W2052464302","https://openalex.org/W2080234606","https://openalex.org/W2087704981","https://openalex.org/W2091825929","https://openalex.org/W2097364154","https://openalex.org/W2099480861","https://openalex.org/W2102481563","https://openalex.org/W2121233699","https://openalex.org/W2144982963","https://openalex.org/W2151303951","https://openalex.org/W2159575389","https://openalex.org/W2167450247","https://openalex.org/W2167973519","https://openalex.org/W2290570361","https://openalex.org/W2439904216","https://openalex.org/W2487095677","https://openalex.org/W2501089562","https://openalex.org/W2530137915","https://openalex.org/W2743723076","https://openalex.org/W2834288129","https://openalex.org/W3189127798","https://openalex.org/W4238185522","https://openalex.org/W4248708867","https://openalex.org/W4249843299","https://openalex.org/W4253423082","https://openalex.org/W4255033750"],"related_works":["https://openalex.org/W4390482104","https://openalex.org/W322408318","https://openalex.org/W3121970507","https://openalex.org/W2963177394","https://openalex.org/W2504004674","https://openalex.org/W2498744856","https://openalex.org/W2110028391","https://openalex.org/W2032233321","https://openalex.org/W1595229445","https://openalex.org/W149041114"],"abstract_inverted_index":{"Network":[0],"monitoring":[1],"and":[2,21,88,135,141,153,191],"management":[3],"require":[4],"accurate":[5],"statistics":[6],"of":[7,10,23,40,54,61,68,78,86,99,101,137,160,176,182],"a":[8,37,52,90],"variety":[9],"flow-level":[11,125],"metrics":[12,33,149],"such":[13],"as":[14],"flow":[15,129],"sizes,":[16,130],"top-":[17,131],"$k$":[19,133],"flows,":[20,134],"number":[22,136],"flows.":[24,138],"Arguably,":[25],"the":[26,59,76,84,97,158,165,174,180],"current":[27],"best":[28,159],"technique":[29],"to":[30,82,95,172],"measure":[31],"these":[32,147],"is":[34,50,164],"sketches.":[35],"While":[36],"significant":[38],"amount":[39],"work":[41,167],"has":[42],"already":[43],"been":[44],"done":[45],"on":[46,103,120,179],"sketching":[47,177],"techniques,":[48],"there":[49],"still":[51],"lot":[53],"room":[55],"for":[56,122,146],"improvement":[57],"because":[58],"accuracy":[60,85,100],"existing":[62],"sketches":[63,102,121],"varies":[64],"with":[65],"changing":[66],"characteristics":[67,181],"network":[69,104,126,183],"traffic.":[70,184],"In":[71],"this":[72,144,163],"paper,":[73],"we":[74,114],"propose":[75,89],"idea":[77],"using":[79,150],"machine":[80,92,117,170],"learning":[81,93,118,171],"improve":[83],"sketches,":[87],"generic":[91],"framework":[94],"reduce":[96,173],"dependence":[98,175],"traffic":[105,155],"characteristics.":[106],"We":[107,139,185],"further":[108],"present":[109],"three":[110,124,148],"case":[111],"studies,":[112],"where":[113],"applied":[115],"our":[116,161,189],"framework":[119,145],"measuring":[123],"metrics,":[127],"namely":[128],"implemented":[140],"extensively":[142],"evaluated":[143],"both":[151],"real-world":[152],"synthetic":[154],"traces.":[156],"To":[157],"knowledge,":[162],"first":[166],"that":[168],"uses":[169],"techniques":[178],"have":[186],"released":[187],"all":[188],"traces":[190],"implementation":[192],"codes":[193],"at":[194],"Github.":[195]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4285126762","counts_by_year":[],"updated_date":"2024-12-11T03:41:21.223397","created_date":"2022-07-14"}