{"id":"https://openalex.org/W2964188884","doi":"https://doi.org/10.1109/tbme.2019.2906688","title":"A Parametric Time-Frequency Conditional Granger Causality Method Using Ultra-Regularized Orthogonal Least Squares and Multiwavelets for Dynamic Connectivity Analysis in EEGs","display_name":"A Parametric Time-Frequency Conditional Granger Causality Method Using Ultra-Regularized Orthogonal Least Squares and Multiwavelets for Dynamic Connectivity Analysis in EEGs","publication_year":2019,"publication_date":"2019-03-27","ids":{"openalex":"https://openalex.org/W2964188884","doi":"https://doi.org/10.1109/tbme.2019.2906688","mag":"2964188884","pmid":"https://pubmed.ncbi.nlm.nih.gov/30932821"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/tbme.2019.2906688","pdf_url":null,"source":{"id":"https://openalex.org/S5240358","display_name":"IEEE Transactions on Biomedical Engineering","issn_l":"0018-9294","issn":["0018-9294","1558-2531"],"is_oa":false,"is_in_doaj":false,"is_core":true,"host_organization":"https://openalex.org/P4310319808","host_organization_name":"Institute of Electrical and Electronics Engineers","host_organization_lineage":["https://openalex.org/P4310319808"],"host_organization_lineage_names":["Institute of Electrical and Electronics Engineers"],"type":"journal"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"journal-article","indexed_in":["crossref","pubmed"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"https://eprints.whiterose.ac.uk/144528/1/IEEE-TBME%20Accepted%20Paper%20%28Accepted%2012-03-2019%29.pdf","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5100421442","display_name":"Yang Li","orcid":"https://orcid.org/0000-0002-1751-1742"},"institutions":[{"id":"https://openalex.org/I82880672","display_name":"Beihang University","ror":"https://ror.org/00wk2mp56","country_code":"CN","type":"education","lineage":["https://openalex.org/I82880672"]},{"id":"https://openalex.org/I4210165198","display_name":"Beijing Advanced Sciences and Innovation Center","ror":"https://ror.org/05qm21180","country_code":"CN","type":"facility","lineage":["https://openalex.org/I19820366","https://openalex.org/I4210165198"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Yang Li","raw_affiliation_strings":["Department of Automation Sciences and Electrical Engineering, Beijing Advanced Innovation Center for Big Data and Brain Computing, Beijing Advanced Innovation Center for Big Data-based Precision Medicine, Beihang University"],"affiliations":[{"raw_affiliation_string":"Department of Automation Sciences and Electrical Engineering, Beijing Advanced Innovation Center for Big Data and Brain Computing, Beijing Advanced Innovation Center for Big Data-based Precision Medicine, Beihang University","institution_ids":["https://openalex.org/I82880672","https://openalex.org/I4210165198"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5016941216","display_name":"Meng-Ying Lei","orcid":"https://orcid.org/0000-0002-2923-9627"},"institutions":[{"id":"https://openalex.org/I82880672","display_name":"Beihang University","ror":"https://ror.org/00wk2mp56","country_code":"CN","type":"education","lineage":["https://openalex.org/I82880672"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Mengying Lei","raw_affiliation_strings":["Department of Automation Sciences and Electrical Engineering, Beihang University, Beijing, China"],"affiliations":[{"raw_affiliation_string":"Department of Automation Sciences and Electrical Engineering, Beihang University, Beijing, China","institution_ids":["https://openalex.org/I82880672"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5067818534","display_name":"Weigang Cui","orcid":"https://orcid.org/0000-0002-7983-9161"},"institutions":[{"id":"https://openalex.org/I82880672","display_name":"Beihang University","ror":"https://ror.org/00wk2mp56","country_code":"CN","type":"education","lineage":["https://openalex.org/I82880672"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Weigang Cui","raw_affiliation_strings":["Department of Automation Sciences and Electrical Engineering, Beihang University"],"affiliations":[{"raw_affiliation_string":"Department of Automation Sciences and Electrical Engineering, Beihang University","institution_ids":["https://openalex.org/I82880672"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5034885233","display_name":"Yuzhu Guo","orcid":"https://orcid.org/0000-0002-8588-5172"},"institutions":[{"id":"https://openalex.org/I82880672","display_name":"Beihang University","ror":"https://ror.org/00wk2mp56","country_code":"CN","type":"education","lineage":["https://openalex.org/I82880672"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Yuzhu Guo","raw_affiliation_strings":["Department of Automation Sciences and Electrical Engineering, Beihang University"],"affiliations":[{"raw_affiliation_string":"Department of Automation Sciences and Electrical Engineering, Beihang University","institution_ids":["https://openalex.org/I82880672"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5026841543","display_name":"Hua\u2010Liang Wei","orcid":"https://orcid.org/0000-0002-4704-7346"},"institutions":[{"id":"https://openalex.org/I91136226","display_name":"University of Sheffield","ror":"https://ror.org/05krs5044","country_code":"GB","type":"education","lineage":["https://openalex.org/I91136226"]}],"countries":["GB"],"is_corresponding":false,"raw_author_name":"Hua-Liang Wei","raw_affiliation_strings":["Department of Automatic Control and Systems Engineering, The University of Sheffield, Sheffield, U.K."],"affiliations":[{"raw_affiliation_string":"Department of Automatic Control and Systems Engineering, The University of Sheffield, Sheffield, U.K.","institution_ids":["https://openalex.org/I91136226"]}]}],"institution_assertions":[],"countries_distinct_count":2,"institutions_distinct_count":3,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":2.289,"has_fulltext":true,"fulltext_origin":"pdf","cited_by_count":26,"citation_normalized_percentile":{"value":0.999936,"is_in_top_1_percent":true,"is_in_top_10_percent":true},"cited_by_percentile_year":{"min":93,"max":94},"biblio":{"volume":"66","issue":"12","first_page":"3509","last_page":"3525"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10581","display_name":"Neural dynamics and brain function","score":0.999,"subfield":{"id":"https://openalex.org/subfields/2805","display_name":"Cognitive Neuroscience"},"field":{"id":"https://openalex.org/fields/28","display_name":"Neuroscience"},"domain":{"id":"https://openalex.org/domains/1","display_name":"Life Sciences"}},"topics":[{"id":"https://openalex.org/T10581","display_name":"Neural dynamics and brain function","score":0.999,"subfield":{"id":"https://openalex.org/subfields/2805","display_name":"Cognitive Neuroscience"},"field":{"id":"https://openalex.org/fields/28","display_name":"Neuroscience"},"domain":{"id":"https://openalex.org/domains/1","display_name":"Life Sciences"}},{"id":"https://openalex.org/T11447","display_name":"Blind Source Separation Techniques","score":0.9966,"subfield":{"id":"https://openalex.org/subfields/1711","display_name":"Signal Processing"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10429","display_name":"EEG and Brain-Computer Interfaces","score":0.9929,"subfield":{"id":"https://openalex.org/subfields/2805","display_name":"Cognitive Neuroscience"},"field":{"id":"https://openalex.org/fields/28","display_name":"Neuroscience"},"domain":{"id":"https://openalex.org/domains/1","display_name":"Life Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/causality","display_name":"Causality","score":0.47277594},{"id":"https://openalex.org/keywords/least-squares-function-approximation","display_name":"Least-squares function approximation","score":0.471084},{"id":"https://openalex.org/keywords/parametric-model","display_name":"Parametric model","score":0.42820656}],"concepts":[{"id":"https://openalex.org/C129824826","wikidata":"https://www.wikidata.org/wiki/Q2630107","display_name":"Granger causality","level":2,"score":0.71198404},{"id":"https://openalex.org/C117251300","wikidata":"https://www.wikidata.org/wiki/Q1849855","display_name":"Parametric statistics","level":2,"score":0.646266},{"id":"https://openalex.org/C142433447","wikidata":"https://www.wikidata.org/wiki/Q7806653","display_name":"Time\u2013frequency analysis","level":3,"score":0.574491},{"id":"https://openalex.org/C64357122","wikidata":"https://www.wikidata.org/wiki/Q1149766","display_name":"Causality (physics)","level":2,"score":0.47277594},{"id":"https://openalex.org/C9936470","wikidata":"https://www.wikidata.org/wiki/Q6510405","display_name":"Least-squares function approximation","level":3,"score":0.471084},{"id":"https://openalex.org/C104267543","wikidata":"https://www.wikidata.org/wiki/Q208163","display_name":"Signal processing","level":3,"score":0.4425203},{"id":"https://openalex.org/C24574437","wikidata":"https://www.wikidata.org/wiki/Q7135228","display_name":"Parametric model","level":3,"score":0.42820656},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.41547775},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.35420048},{"id":"https://openalex.org/C11413529","wikidata":"https://www.wikidata.org/wiki/Q8366","display_name":"Algorithm","level":1,"score":0.34882146},{"id":"https://openalex.org/C28490314","wikidata":"https://www.wikidata.org/wiki/Q189436","display_name":"Speech recognition","level":1,"score":0.33181906},{"id":"https://openalex.org/C149782125","wikidata":"https://www.wikidata.org/wiki/Q160039","display_name":"Econometrics","level":1,"score":0.2796771},{"id":"https://openalex.org/C105795698","wikidata":"https://www.wikidata.org/wiki/Q12483","display_name":"Statistics","level":1,"score":0.24092284},{"id":"https://openalex.org/C121332964","wikidata":"https://www.wikidata.org/wiki/Q413","display_name":"Physics","level":0,"score":0.17785677},{"id":"https://openalex.org/C84462506","wikidata":"https://www.wikidata.org/wiki/Q173142","display_name":"Digital signal processing","level":2,"score":0.08164868},{"id":"https://openalex.org/C76155785","wikidata":"https://www.wikidata.org/wiki/Q418","display_name":"Telecommunications","level":1,"score":0.076167524},{"id":"https://openalex.org/C554190296","wikidata":"https://www.wikidata.org/wiki/Q47528","display_name":"Radar","level":2,"score":0.0},{"id":"https://openalex.org/C185429906","wikidata":"https://www.wikidata.org/wiki/Q1130160","display_name":"Estimator","level":2,"score":0.0},{"id":"https://openalex.org/C62520636","wikidata":"https://www.wikidata.org/wiki/Q944","display_name":"Quantum mechanics","level":1,"score":0.0},{"id":"https://openalex.org/C9390403","wikidata":"https://www.wikidata.org/wiki/Q3966","display_name":"Computer hardware","level":1,"score":0.0}],"mesh":[{"descriptor_ui":"D001921","descriptor_name":"Brain","qualifier_ui":"Q000502","qualifier_name":"physiology","is_major_topic":true},{"descriptor_ui":"D004569","descriptor_name":"Electroencephalography","qualifier_ui":"Q000379","qualifier_name":"methods","is_major_topic":true},{"descriptor_ui":"D016018","descriptor_name":"Least-Squares Analysis","qualifier_ui":"","qualifier_name":null,"is_major_topic":true},{"descriptor_ui":"D012815","descriptor_name":"Signal Processing, Computer-Assisted","qualifier_ui":"","qualifier_name":null,"is_major_topic":true},{"descriptor_ui":"D000465","descriptor_name":"Algorithms","qualifier_ui":"","qualifier_name":null,"is_major_topic":false},{"descriptor_ui":"D001921","descriptor_name":"Brain","qualifier_ui":"","qualifier_name":null,"is_major_topic":false},{"descriptor_ui":"D004569","descriptor_name":"Electroencephalography","qualifier_ui":"","qualifier_name":null,"is_major_topic":false},{"descriptor_ui":"D006801","descriptor_name":"Humans","qualifier_ui":"","qualifier_name":null,"is_major_topic":false},{"descriptor_ui":"D007092","descriptor_name":"Imagination","qualifier_ui":"","qualifier_name":null,"is_major_topic":false},{"descriptor_ui":"D007092","descriptor_name":"Imagination","qualifier_ui":"Q000502","qualifier_name":"physiology","is_major_topic":false},{"descriptor_ui":"D019579","descriptor_name":"Neocortex","qualifier_ui":"","qualifier_name":null,"is_major_topic":false},{"descriptor_ui":"D019579","descriptor_name":"Neocortex","qualifier_ui":"Q000502","qualifier_name":"physiology","is_major_topic":false},{"descriptor_ui":"D009415","descriptor_name":"Nerve Net","qualifier_ui":"","qualifier_name":null,"is_major_topic":false},{"descriptor_ui":"D009415","descriptor_name":"Nerve Net","qualifier_ui":"Q000502","qualifier_name":"physiology","is_major_topic":false}],"locations_count":4,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/tbme.2019.2906688","pdf_url":null,"source":{"id":"https://openalex.org/S5240358","display_name":"IEEE Transactions on Biomedical Engineering","issn_l":"0018-9294","issn":["0018-9294","1558-2531"],"is_oa":false,"is_in_doaj":false,"is_core":true,"host_organization":"https://openalex.org/P4310319808","host_organization_name":"Institute of Electrical and Electronics Engineers","host_organization_lineage":["https://openalex.org/P4310319808"],"host_organization_lineage_names":["Institute of Electrical and Electronics Engineers"],"type":"journal"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},{"is_oa":true,"landing_page_url":"https://eprints.whiterose.ac.uk/144528/1/IEEE-TBME%20Accepted%20Paper%20%28Accepted%2012-03-2019%29.pdf","pdf_url":"https://eprints.whiterose.ac.uk/144528/1/IEEE-TBME%20Accepted%20Paper%20%28Accepted%2012-03-2019%29.pdf","source":{"id":"https://openalex.org/S4377196101","display_name":"White Rose Research Online (University of Leeds)","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I130828816","host_organization_name":"University of Leeds","host_organization_lineage":["https://openalex.org/I130828816"],"host_organization_lineage_names":["University of Leeds"],"type":"repository"},"license":null,"license_id":null,"version":"acceptedVersion","is_accepted":true,"is_published":false},{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/1810.09119","pdf_url":"https://arxiv.org/pdf/1810.09119","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":false,"landing_page_url":"https://pubmed.ncbi.nlm.nih.gov/30932821","pdf_url":null,"source":{"id":"https://openalex.org/S4306525036","display_name":"PubMed","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I1299303238","host_organization_name":"National Institutes of Health","host_organization_lineage":["https://openalex.org/I1299303238"],"host_organization_lineage_names":["National Institutes of Health"],"type":"repository"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://eprints.whiterose.ac.uk/144528/1/IEEE-TBME%20Accepted%20Paper%20%28Accepted%2012-03-2019%29.pdf","pdf_url":"https://eprints.whiterose.ac.uk/144528/1/IEEE-TBME%20Accepted%20Paper%20%28Accepted%2012-03-2019%29.pdf","source":{"id":"https://openalex.org/S4377196101","display_name":"White Rose Research Online (University of Leeds)","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I130828816","host_organization_name":"University of Leeds","host_organization_lineage":["https://openalex.org/I130828816"],"host_organization_lineage_names":["University of Leeds"],"type":"repository"},"license":null,"license_id":null,"version":"acceptedVersion","is_accepted":true,"is_published":false},"sustainable_development_goals":[],"grants":[{"funder":"https://openalex.org/F4320321001","funder_display_name":"National Natural Science Foundation of China","award_id":"U1809209"},{"funder":"https://openalex.org/F4320321001","funder_display_name":"National Natural Science Foundation of China","award_id":"61671042"},{"funder":"https://openalex.org/F4320321001","funder_display_name":"National Natural Science Foundation of China","award_id":"61403016"},{"funder":"https://openalex.org/F4320322919","funder_display_name":"Natural Science Foundation of Beijing Municipality","award_id":"L182015"},{"funder":"https://openalex.org/F4320322919","funder_display_name":"Natural Science Foundation of Beijing Municipality","award_id":"4172037"},{"funder":"https://openalex.org/F4320334627","funder_display_name":"Engineering and Physical Sciences Research Council","award_id":"EP/I011056/1"}],"datasets":[],"versions":[],"referenced_works_count":59,"referenced_works":["https://openalex.org/W1173784407","https://openalex.org/W1442097360","https://openalex.org/W1538292829","https://openalex.org/W1603307924","https://openalex.org/W1959164575","https://openalex.org/W1983523765","https://openalex.org/W1985968910","https://openalex.org/W1992488134","https://openalex.org/W1995113957","https://openalex.org/W1996469777","https://openalex.org/W1997047095","https://openalex.org/W2007919714","https://openalex.org/W2020245429","https://openalex.org/W2028329161","https://openalex.org/W2031175485","https://openalex.org/W2035100132","https://openalex.org/W2044692866","https://openalex.org/W2064979714","https://openalex.org/W2066400502","https://openalex.org/W2068458829","https://openalex.org/W2069762774","https://openalex.org/W2071106906","https://openalex.org/W2074501647","https://openalex.org/W2081160287","https://openalex.org/W2085142353","https://openalex.org/W2085900457","https://openalex.org/W2089361438","https://openalex.org/W2090696802","https://openalex.org/W2109582949","https://openalex.org/W2112709449","https://openalex.org/W2113862745","https://openalex.org/W2119739937","https://openalex.org/W2122418437","https://openalex.org/W2123346926","https://openalex.org/W2124381750","https://openalex.org/W2134288234","https://openalex.org/W2140413964","https://openalex.org/W2142635246","https://openalex.org/W2142875089","https://openalex.org/W2159632462","https://openalex.org/W2162800060","https://openalex.org/W2178225550","https://openalex.org/W2267287690","https://openalex.org/W2293644081","https://openalex.org/W2322017115","https://openalex.org/W2473798019","https://openalex.org/W2500997565","https://openalex.org/W2521283808","https://openalex.org/W2617597597","https://openalex.org/W2625805440","https://openalex.org/W2669968314","https://openalex.org/W2700941757","https://openalex.org/W2726227717","https://openalex.org/W2790313085","https://openalex.org/W2801104962","https://openalex.org/W2808484379","https://openalex.org/W2899459625","https://openalex.org/W4236383456","https://openalex.org/W4241868268"],"related_works":["https://openalex.org/W4251418261","https://openalex.org/W4251195004","https://openalex.org/W4242807451","https://openalex.org/W2977645287","https://openalex.org/W2154758532","https://openalex.org/W2127540830","https://openalex.org/W2035792466","https://openalex.org/W1972675643","https://openalex.org/W1500691956","https://openalex.org/W126301054"],"abstract_inverted_index":{"This":[0],"study":[1],"proposes":[2],"a":[3,114],"new":[4,193],"parametric":[5],"time-frequency":[6],"conditional":[7],"Granger":[8],"causality":[9],"(TF-CGC)":[10],"method":[11,117,154,212,226],"for":[12],"high-precision":[13],"connectivity":[14,184],"analysis":[15],"over":[16],"time":[17],"and":[18,26,94,126,131,160,181,191,238],"frequency":[19],"domain":[20],"in":[21,39,118,148,213],"multivariate":[22,149],"coupling":[23],"nonstationary":[24],"systems,":[25],"applies":[27],"it":[28],"to":[29,34,79,99,144,163,229],"source":[30,164],"electroencephalogram":[31],"(EEG)":[32],"signals":[33],"reveal":[35],"dynamic":[36],"interaction":[37],"patterns":[38,185],"oscillatory":[40,200,220],"neocortical":[41],"sensorimotor":[42],"networks.":[43,202,221],"Methods:":[44],"The":[45,85,135,152,223],"Geweke's":[46],"spectral":[47],"measure":[48,100],"is":[49,113,142,155,227],"combined":[50],"with":[51,55,122,177],"the":[52,91,95,103,108,171,182,196,207,210],"time-varying":[53,82,120],"autoregressive":[54],"exogenous":[56],"input":[57],"(TVARX)":[58],"modeling":[59],"approach,":[60],"which":[61,88],"uses":[62],"multiwavelet-based":[63],"ultra-regularized":[64],"orthogonal":[65],"least":[66],"squares":[67,77,97],"(UROLS)":[68],"algorithm,":[69,87],"aided":[70],"by":[71],"adjustable":[72],"prediction":[73],"error":[74],"sum":[75],"of":[76,111,186,199,209,218,233,236],"(APRESS),":[78],"obtain":[80],"high-resolution":[81],"CGC":[83,140],"representations.":[84],"UROLS-APRESS":[86],"adopts":[89],"both":[90],"regularization":[92],"technique":[93],"ultra-least":[96],"criterion":[98],"not":[101],"only":[102],"signal":[104],"themselves,":[105],"but":[106],"also":[107],"weak":[109],"derivatives":[110],"them,":[112],"novel":[115,224],"powerful":[116],"constructing":[119],"models":[121],"good":[123],"generalization":[124],"performance,":[125],"can":[127],"accurately":[128],"track":[129],"smooth":[130],"fast":[132],"changing":[133],"causalities.":[134],"generalized":[136],"measurement":[137],"based":[138],"on":[139,157],"decomposition":[141],"able":[143],"eliminate":[145],"indirect":[146],"influences":[147],"systems.":[150],"Results:":[151],"proposed":[153],"validated":[156],"two":[158],"simulations,":[159],"then":[161],"applied":[162],"level":[165],"motor":[166],"imagery":[167],"(MI)":[168],"EEGs,":[169],"where":[170],"predicted":[172],"distributions":[173],"are":[174,188],"well":[175],"recovered":[176],"high":[178],"TF":[179],"precision,":[180],"detected":[183],"MI-EEGs":[187],"physiologically":[189],"interpretable":[190],"yield":[192],"insights":[194],"into":[195],"dynamical":[197],"organization":[198],"cortical":[201],"Conclusion:":[203],"Experimental":[204],"results":[205],"confirm":[206],"effectiveness":[208],"TF-CGC":[211,225],"tracking":[214],"rapidly":[215],"varying":[216],"causalities":[217],"EEG-based":[219],"Significance:":[222],"expected":[228],"provide":[230],"important":[231],"information":[232],"neural":[234],"mechanisms":[235],"perception":[237],"cognition.":[239]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W2964188884","counts_by_year":[{"year":2024,"cited_by_count":3},{"year":2023,"cited_by_count":3},{"year":2022,"cited_by_count":7},{"year":2021,"cited_by_count":6},{"year":2020,"cited_by_count":2},{"year":2019,"cited_by_count":5}],"updated_date":"2024-12-07T19:03:54.950769","created_date":"2019-07-30"}