{"id":"https://openalex.org/W4225693658","doi":"https://doi.org/10.1109/tbdata.2022.3163584","title":"A Generalized Deep Learning Algorithm Based on NMF for Multi-View Clustering","display_name":"A Generalized Deep Learning Algorithm Based on NMF for Multi-View Clustering","publication_year":2022,"publication_date":"2022-03-30","ids":{"openalex":"https://openalex.org/W4225693658","doi":"https://doi.org/10.1109/tbdata.2022.3163584"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/tbdata.2022.3163584","pdf_url":null,"source":{"id":"https://openalex.org/S2491400915","display_name":"IEEE Transactions on Big Data","issn_l":"2332-7790","issn":["2332-7790","2372-2096"],"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":true,"is_core":true,"host_organization":"https://openalex.org/P4310320439","host_organization_name":"IEEE Computer Society","host_organization_lineage":["https://openalex.org/P4310320439","https://openalex.org/P4310319808"],"host_organization_lineage_names":["IEEE Computer Society","Institute of Electrical and Electronics Engineers"],"type":"journal"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"journal-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5102710985","display_name":"Dexian Wang","orcid":"https://orcid.org/0000-0002-7700-1023"},"institutions":[{"id":"https://openalex.org/I4800084","display_name":"Southwest Jiaotong University","ror":"https://ror.org/00hn7w693","country_code":"CN","type":"funder","lineage":["https://openalex.org/I4800084"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Dexian Wang","raw_affiliation_strings":["School of Computing and Artificial Intelligence, Southwest Jiaotong University, Chengdu, China"],"affiliations":[{"raw_affiliation_string":"School of Computing and Artificial Intelligence, Southwest Jiaotong University, Chengdu, China","institution_ids":["https://openalex.org/I4800084"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5070559820","display_name":"Tianrui Li","orcid":"https://orcid.org/0000-0001-7780-104X"},"institutions":[{"id":"https://openalex.org/I4800084","display_name":"Southwest Jiaotong University","ror":"https://ror.org/00hn7w693","country_code":"CN","type":"funder","lineage":["https://openalex.org/I4800084"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Tianrui Li","raw_affiliation_strings":["National Engineering Laboratory of Integrated Transportation Big Data Application Technology, Southwest Jiaotong University, Chengdu, China","School of Computing and Artificial Intelligence, Southwest Jiaotong University, Chengdu, China"],"affiliations":[{"raw_affiliation_string":"National Engineering Laboratory of Integrated Transportation Big Data Application Technology, Southwest Jiaotong University, Chengdu, China","institution_ids":["https://openalex.org/I4800084"]},{"raw_affiliation_string":"School of Computing and Artificial Intelligence, Southwest Jiaotong University, Chengdu, China","institution_ids":["https://openalex.org/I4800084"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5038402526","display_name":"Ping Deng","orcid":"https://orcid.org/0000-0001-7208-8855"},"institutions":[{"id":"https://openalex.org/I4800084","display_name":"Southwest Jiaotong University","ror":"https://ror.org/00hn7w693","country_code":"CN","type":"funder","lineage":["https://openalex.org/I4800084"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Ping Deng","raw_affiliation_strings":["School of Computing and Artificial Intelligence, Southwest Jiaotong University, Chengdu, China"],"affiliations":[{"raw_affiliation_string":"School of Computing and Artificial Intelligence, Southwest Jiaotong University, Chengdu, China","institution_ids":["https://openalex.org/I4800084"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5100409694","display_name":"Jia Liu","orcid":"https://orcid.org/0000-0002-2910-3447"},"institutions":[{"id":"https://openalex.org/I4800084","display_name":"Southwest Jiaotong University","ror":"https://ror.org/00hn7w693","country_code":"CN","type":"funder","lineage":["https://openalex.org/I4800084"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Jia Liu","raw_affiliation_strings":["School of Computing and Artificial Intelligence, Southwest Jiaotong University, Chengdu, China"],"affiliations":[{"raw_affiliation_string":"School of Computing and Artificial Intelligence, Southwest Jiaotong University, Chengdu, China","institution_ids":["https://openalex.org/I4800084"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5035520853","display_name":"Wei Huang","orcid":"https://orcid.org/0000-0001-9031-107X"},"institutions":[{"id":"https://openalex.org/I4800084","display_name":"Southwest Jiaotong University","ror":"https://ror.org/00hn7w693","country_code":"CN","type":"funder","lineage":["https://openalex.org/I4800084"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Wei Huang","raw_affiliation_strings":["School of Computing and Artificial Intelligence, Southwest Jiaotong University, Chengdu, China"],"affiliations":[{"raw_affiliation_string":"School of Computing and Artificial Intelligence, Southwest Jiaotong University, Chengdu, China","institution_ids":["https://openalex.org/I4800084"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5100403515","display_name":"Fan Zhang","orcid":"https://orcid.org/0000-0002-8735-2812"},"institutions":[{"id":"https://openalex.org/I4800084","display_name":"Southwest Jiaotong University","ror":"https://ror.org/00hn7w693","country_code":"CN","type":"funder","lineage":["https://openalex.org/I4800084"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Fan Zhang","raw_affiliation_strings":["Manufacturing Industry Chains Collaboration, Information Support Technology Key Laboratory of Sichuan Province, Chengdu, China","School of Computing and Artificial Intelligence, Southwest Jiaotong University, Chengdu, China"],"affiliations":[{"raw_affiliation_string":"Manufacturing Industry Chains Collaboration, Information Support Technology Key Laboratory of Sichuan Province, Chengdu, China","institution_ids":[]},{"raw_affiliation_string":"School of Computing and Artificial Intelligence, Southwest Jiaotong University, Chengdu, China","institution_ids":["https://openalex.org/I4800084"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":1,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":5.35,"has_fulltext":false,"cited_by_count":41,"citation_normalized_percentile":{"value":0.999949,"is_in_top_1_percent":true,"is_in_top_10_percent":true},"cited_by_percentile_year":{"min":98,"max":99},"biblio":{"volume":"9","issue":"1","first_page":"328","last_page":"340"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10057","display_name":"Face and Expression Recognition","score":0.9988,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10057","display_name":"Face and Expression Recognition","score":0.9988,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10689","display_name":"Remote-Sensing Image Classification","score":0.9936,"subfield":{"id":"https://openalex.org/subfields/2214","display_name":"Media Technology"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T13731","display_name":"Advanced Computing and Algorithms","score":0.9883,"subfield":{"id":"https://openalex.org/subfields/3322","display_name":"Urban Studies"},"field":{"id":"https://openalex.org/fields/33","display_name":"Social Sciences"},"domain":{"id":"https://openalex.org/domains/2","display_name":"Social Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/non-negative-matrix-factorization","display_name":"Non-negative Matrix Factorization","score":0.71936363},{"id":"https://openalex.org/keywords/stochastic-gradient-descent","display_name":"Stochastic Gradient Descent","score":0.5306828},{"id":"https://openalex.org/keywords/matrix","display_name":"Matrix (chemical analysis)","score":0.43775967}],"concepts":[{"id":"https://openalex.org/C73555534","wikidata":"https://www.wikidata.org/wiki/Q622825","display_name":"Cluster analysis","level":2,"score":0.7744801},{"id":"https://openalex.org/C152671427","wikidata":"https://www.wikidata.org/wiki/Q10843505","display_name":"Non-negative matrix factorization","level":4,"score":0.71936363},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.706374},{"id":"https://openalex.org/C206688291","wikidata":"https://www.wikidata.org/wiki/Q7617819","display_name":"Stochastic gradient descent","level":3,"score":0.5306828},{"id":"https://openalex.org/C153258448","wikidata":"https://www.wikidata.org/wiki/Q1199743","display_name":"Gradient descent","level":3,"score":0.52531415},{"id":"https://openalex.org/C11413529","wikidata":"https://www.wikidata.org/wiki/Q8366","display_name":"Algorithm","level":1,"score":0.50866205},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.49057287},{"id":"https://openalex.org/C42355184","wikidata":"https://www.wikidata.org/wiki/Q1361088","display_name":"Matrix decomposition","level":3,"score":0.4721615},{"id":"https://openalex.org/C106487976","wikidata":"https://www.wikidata.org/wiki/Q685816","display_name":"Matrix (chemical analysis)","level":2,"score":0.43775967},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.39047313},{"id":"https://openalex.org/C124101348","wikidata":"https://www.wikidata.org/wiki/Q172491","display_name":"Data mining","level":1,"score":0.333848},{"id":"https://openalex.org/C50644808","wikidata":"https://www.wikidata.org/wiki/Q192776","display_name":"Artificial neural network","level":2,"score":0.16231349},{"id":"https://openalex.org/C158693339","wikidata":"https://www.wikidata.org/wiki/Q190524","display_name":"Eigenvalues and eigenvectors","level":2,"score":0.1172241},{"id":"https://openalex.org/C121332964","wikidata":"https://www.wikidata.org/wiki/Q413","display_name":"Physics","level":0,"score":0.0},{"id":"https://openalex.org/C192562407","wikidata":"https://www.wikidata.org/wiki/Q228736","display_name":"Materials science","level":0,"score":0.0},{"id":"https://openalex.org/C159985019","wikidata":"https://www.wikidata.org/wiki/Q181790","display_name":"Composite material","level":1,"score":0.0},{"id":"https://openalex.org/C62520636","wikidata":"https://www.wikidata.org/wiki/Q944","display_name":"Quantum mechanics","level":1,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/tbdata.2022.3163584","pdf_url":null,"source":{"id":"https://openalex.org/S2491400915","display_name":"IEEE Transactions on Big Data","issn_l":"2332-7790","issn":["2332-7790","2372-2096"],"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":true,"is_core":true,"host_organization":"https://openalex.org/P4310320439","host_organization_name":"IEEE Computer Society","host_organization_lineage":["https://openalex.org/P4310320439","https://openalex.org/P4310319808"],"host_organization_lineage_names":["IEEE Computer Society","Institute of Electrical and Electronics Engineers"],"type":"journal"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[],"grants":[{"funder":"https://openalex.org/F4320321001","funder_display_name":"National Natural Science Foundation of China","award_id":"62176221"},{"funder":"https://openalex.org/F4320321001","funder_display_name":"National Natural Science Foundation of China","award_id":"61876158"},{"funder":"https://openalex.org/F4320321001","funder_display_name":"National Natural Science Foundation of China","award_id":"61806170"},{"funder":"https://openalex.org/F4320321001","funder_display_name":"National Natural Science Foundation of China","award_id":"61773324"}],"datasets":[],"versions":[],"referenced_works_count":51,"referenced_works":["https://openalex.org/W1498436455","https://openalex.org/W1501500081","https://openalex.org/W1572158434","https://openalex.org/W1902027874","https://openalex.org/W1993962865","https://openalex.org/W2040870580","https://openalex.org/W2093910183","https://openalex.org/W2108502868","https://openalex.org/W2124744969","https://openalex.org/W2125874614","https://openalex.org/W2146502635","https://openalex.org/W2153233077","https://openalex.org/W2154415691","https://openalex.org/W2155904486","https://openalex.org/W2162316550","https://openalex.org/W2199534117","https://openalex.org/W2405459681","https://openalex.org/W2493084460","https://openalex.org/W2514638911","https://openalex.org/W2586686153","https://openalex.org/W2587115404","https://openalex.org/W2605146283","https://openalex.org/W2608812095","https://openalex.org/W2737186053","https://openalex.org/W2748391982","https://openalex.org/W2770558925","https://openalex.org/W2787885212","https://openalex.org/W2808465901","https://openalex.org/W2809368372","https://openalex.org/W2891953767","https://openalex.org/W2898233200","https://openalex.org/W2898541610","https://openalex.org/W2919115771","https://openalex.org/W2921065608","https://openalex.org/W2966840649","https://openalex.org/W2970354123","https://openalex.org/W297461772","https://openalex.org/W2989044887","https://openalex.org/W2995857167","https://openalex.org/W2997739739","https://openalex.org/W2997969890","https://openalex.org/W3088893343","https://openalex.org/W3089039599","https://openalex.org/W3093207983","https://openalex.org/W3128380325","https://openalex.org/W3128918602","https://openalex.org/W3176694003","https://openalex.org/W3182881260","https://openalex.org/W3204096038","https://openalex.org/W4250589301","https://openalex.org/W4250657332"],"related_works":["https://openalex.org/W4390394189","https://openalex.org/W34555840","https://openalex.org/W2972997031","https://openalex.org/W2792706544","https://openalex.org/W2539013788","https://openalex.org/W2156699640","https://openalex.org/W2127243424","https://openalex.org/W2045265907","https://openalex.org/W2037504162","https://openalex.org/W1568451138"],"abstract_inverted_index":{"Multi-view":[0],"clustering":[1,26,34,59],"research":[2],"is":[3,137],"a":[4,54,84],"hot":[5],"topic":[6],"in":[7,70],"the":[8,25,68,71,73,89,102,106,120,141,153,158,162,182],"field":[9],"of":[10,145,161],"data":[11,21],"mining,":[12],"where":[13],"complementary":[14],"information":[15],"between":[16],"views":[17],"can":[18],"better":[19],"describe":[20],"objects":[22],"and":[23,44,88,114,123,148,178,181],"improve":[24],"performance.":[27],"Non-negative":[28],"matrix":[29,74,144,150],"factorization":[30],"(NMF)":[31],"based":[32,62],"multi-view":[33,58],"algorithm":[35,61,164],"suffers":[36],"from":[37],"weak":[38],"feature":[39],"extraction,":[40],"slow":[41],"convergence":[42],"speed":[43],"low":[45],"accuracy.":[46],"To":[47],"solve":[48],"these":[49],"problems,":[50],"this":[51],"paper":[52],"proposes":[53],"generalized":[55,112,115,121,124,131],"deep":[56,132],"learning":[57,98,133],"(GDLMC)":[60],"on":[63,172],"NMF.":[64],"Firstly,":[65],"via":[66],"decoupling":[67],"elements":[69,75,90,107],"matrix,":[72],"are":[76,91,109,165,170],"non-negatively":[77],"restricted":[78],"using":[79],"an":[80],"activation":[81,127],"function":[82],"with":[83,97,126],"non-negative":[85],"value":[86],"domain,":[87],"updated":[92],"employing":[93],"stochastic":[94],"gradient":[95],"descent":[96],"rate":[99],"guidance.":[100],"Then,":[101],"corresponding":[103,142],"gradients":[104],"when":[105],"update":[108],"transformed":[110],"into":[111],"weights":[113,122],"biases,":[116],"followed":[117],"by":[118],"combining":[119],"biases":[125],"functions":[128],"to":[129,139],"construct":[130],"(GDL).":[134],"Further,":[135],"GDL":[136],"adopted":[138],"learn":[140],"low-dimensional":[143],"each":[146],"view":[147],"consensus":[149],"for":[151],"obtaining":[152],"GDLMC":[154,163,187],"algorithm.":[155],"In":[156],"addition,":[157],"detailed":[159],"reasoning":[160],"given.":[166],"Finally,":[167],"extensive":[168],"experiments":[169],"conducted":[171],"four":[173],"public":[174],"datasets":[175],"including":[176],"regular":[177],"large-scale":[179],"datasets,":[180],"experimental":[183],"results":[184],"show":[185],"that":[186],"has":[188],"significant":[189],"advantages.":[190]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4225693658","counts_by_year":[{"year":2025,"cited_by_count":9},{"year":2024,"cited_by_count":18},{"year":2023,"cited_by_count":12},{"year":2022,"cited_by_count":2}],"updated_date":"2025-04-10T17:20:23.308481","created_date":"2022-05-05"}