{"id":"https://openalex.org/W3163024717","doi":"https://doi.org/10.1109/tase.2021.3074984","title":"How Deep Is Deep Enough for Deep Belief Network for Approximating Model Predictive Control Law","display_name":"How Deep Is Deep Enough for Deep Belief Network for Approximating Model Predictive Control Law","publication_year":2021,"publication_date":"2021-05-08","ids":{"openalex":"https://openalex.org/W3163024717","doi":"https://doi.org/10.1109/tase.2021.3074984","mag":"3163024717"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/tase.2021.3074984","pdf_url":null,"source":{"id":"https://openalex.org/S34881539","display_name":"IEEE Transactions on Automation Science and Engineering","issn_l":"1545-5955","issn":["1545-5955","1558-3783"],"is_oa":false,"is_in_doaj":false,"is_core":true,"host_organization":"https://openalex.org/P4310319808","host_organization_name":"Institute of Electrical and Electronics Engineers","host_organization_lineage":["https://openalex.org/P4310319808"],"host_organization_lineage_names":["Institute of Electrical and Electronics Engineers"],"type":"journal"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"journal-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5108028771","display_name":"Gongming Wang","orcid":"https://orcid.org/0000-0002-8124-2890"},"institutions":[{"id":"https://openalex.org/I37796252","display_name":"Beijing University of Technology","ror":"https://ror.org/037b1pp87","country_code":"CN","type":"education","lineage":["https://openalex.org/I37796252"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Gongming Wang","raw_affiliation_strings":["Faculty of Information Technology, College of Artificial Intelligence and Automation, Beijing University of Technology, Beijing, China"],"affiliations":[{"raw_affiliation_string":"Faculty of Information Technology, College of Artificial Intelligence and Automation, Beijing University of Technology, Beijing, China","institution_ids":["https://openalex.org/I37796252"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5055432844","display_name":"Junfei Qiao","orcid":"https://orcid.org/0000-0002-1707-6074"},"institutions":[{"id":"https://openalex.org/I37796252","display_name":"Beijing University of Technology","ror":"https://ror.org/037b1pp87","country_code":"CN","type":"education","lineage":["https://openalex.org/I37796252"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Junfei Qiao","raw_affiliation_strings":["Faculty of Information Technology, College of Artificial Intelligence and Automation, Beijing University of Technology, Beijing, China"],"affiliations":[{"raw_affiliation_string":"Faculty of Information Technology, College of Artificial Intelligence and Automation, Beijing University of Technology, Beijing, China","institution_ids":["https://openalex.org/I37796252"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5110840893","display_name":"Caixia Liu","orcid":null},"institutions":[{"id":"https://openalex.org/I20231570","display_name":"Peking University","ror":"https://ror.org/02v51f717","country_code":"CN","type":"education","lineage":["https://openalex.org/I20231570"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Caixia Liu","raw_affiliation_strings":["Department of Environmental Engineering, Peking University, Beijing, China"],"affiliations":[{"raw_affiliation_string":"Department of Environmental Engineering, Peking University, Beijing, China","institution_ids":["https://openalex.org/I20231570"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5063794860","display_name":"Zhaoxu Shen","orcid":null},"institutions":[],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Zhaoxu Shen","raw_affiliation_strings":["Sunshine Insurance Agent Group, Beijing, China"],"affiliations":[{"raw_affiliation_string":"Sunshine Insurance Agent Group, Beijing, China","institution_ids":[]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":2,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":0.869,"has_fulltext":false,"cited_by_count":7,"citation_normalized_percentile":{"value":0.740409,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":83,"max":84},"biblio":{"volume":"19","issue":"3","first_page":"2067","last_page":"2078"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10791","display_name":"Advanced Control Systems Optimization","score":0.9991,"subfield":{"id":"https://openalex.org/subfields/2207","display_name":"Control and Systems Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10791","display_name":"Advanced Control Systems Optimization","score":0.9991,"subfield":{"id":"https://openalex.org/subfields/2207","display_name":"Control and Systems Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10876","display_name":"Fault Detection and Control Systems","score":0.9971,"subfield":{"id":"https://openalex.org/subfields/2207","display_name":"Control and Systems Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T12676","display_name":"Machine Learning and ELM","score":0.9939,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/deep-belief-network","display_name":"Deep belief network","score":0.88344467},{"id":"https://openalex.org/keywords/model-predictive-control","display_name":"Model Predictive Control","score":0.71202064},{"id":"https://openalex.org/keywords/benchmark","display_name":"Benchmark (surveying)","score":0.5761088}],"concepts":[{"id":"https://openalex.org/C97385483","wikidata":"https://www.wikidata.org/wiki/Q16954980","display_name":"Deep belief network","level":3,"score":0.88344467},{"id":"https://openalex.org/C172205157","wikidata":"https://www.wikidata.org/wiki/Q1782962","display_name":"Model predictive control","level":3,"score":0.71202064},{"id":"https://openalex.org/C108583219","wikidata":"https://www.wikidata.org/wiki/Q197536","display_name":"Deep learning","level":2,"score":0.62160844},{"id":"https://openalex.org/C185798385","wikidata":"https://www.wikidata.org/wiki/Q1161707","display_name":"Benchmark (surveying)","level":2,"score":0.5761088},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.5575324},{"id":"https://openalex.org/C164660894","wikidata":"https://www.wikidata.org/wiki/Q2037833","display_name":"Piecewise","level":2,"score":0.46531773},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.4634988},{"id":"https://openalex.org/C157286648","wikidata":"https://www.wikidata.org/wiki/Q846780","display_name":"Kalman filter","level":2,"score":0.41665548},{"id":"https://openalex.org/C47446073","wikidata":"https://www.wikidata.org/wiki/Q5165890","display_name":"Control theory (sociology)","level":3,"score":0.39825514},{"id":"https://openalex.org/C199539241","wikidata":"https://www.wikidata.org/wiki/Q7748","display_name":"Law","level":1,"score":0.36372173},{"id":"https://openalex.org/C126255220","wikidata":"https://www.wikidata.org/wiki/Q141495","display_name":"Mathematical optimization","level":1,"score":0.35212934},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.3101685},{"id":"https://openalex.org/C2775924081","wikidata":"https://www.wikidata.org/wiki/Q55608371","display_name":"Control (management)","level":2,"score":0.18539321},{"id":"https://openalex.org/C13280743","wikidata":"https://www.wikidata.org/wiki/Q131089","display_name":"Geodesy","level":1,"score":0.0},{"id":"https://openalex.org/C17744445","wikidata":"https://www.wikidata.org/wiki/Q36442","display_name":"Political science","level":0,"score":0.0},{"id":"https://openalex.org/C205649164","wikidata":"https://www.wikidata.org/wiki/Q1071","display_name":"Geography","level":0,"score":0.0},{"id":"https://openalex.org/C134306372","wikidata":"https://www.wikidata.org/wiki/Q7754","display_name":"Mathematical analysis","level":1,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/tase.2021.3074984","pdf_url":null,"source":{"id":"https://openalex.org/S34881539","display_name":"IEEE Transactions on Automation Science and Engineering","issn_l":"1545-5955","issn":["1545-5955","1558-3783"],"is_oa":false,"is_in_doaj":false,"is_core":true,"host_organization":"https://openalex.org/P4310319808","host_organization_name":"Institute of Electrical and Electronics Engineers","host_organization_lineage":["https://openalex.org/P4310319808"],"host_organization_lineage_names":["Institute of Electrical and Electronics Engineers"],"type":"journal"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[{"display_name":"Peace, justice, and strong institutions","id":"https://metadata.un.org/sdg/16","score":0.76}],"grants":[{"funder":"https://openalex.org/F4320321001","funder_display_name":"National Natural Science Foundation of China","award_id":"61890935"},{"funder":"https://openalex.org/F4320321001","funder_display_name":"National Natural Science Foundation of China","award_id":"61890930"},{"funder":"https://openalex.org/F4320321001","funder_display_name":"National Natural Science Foundation of China","award_id":"62003185"}],"datasets":[],"versions":[],"referenced_works_count":46,"referenced_works":["https://openalex.org/W1551020779","https://openalex.org/W1661947036","https://openalex.org/W1993170675","https://openalex.org/W2000439575","https://openalex.org/W2029282549","https://openalex.org/W2038507465","https://openalex.org/W2047950320","https://openalex.org/W2100495367","https://openalex.org/W2100996838","https://openalex.org/W2133573607","https://openalex.org/W2134961275","https://openalex.org/W2136922672","https://openalex.org/W2142588311","https://openalex.org/W2170262723","https://openalex.org/W2281096776","https://openalex.org/W2524758238","https://openalex.org/W2540435494","https://openalex.org/W2567444783","https://openalex.org/W2610729215","https://openalex.org/W2738226240","https://openalex.org/W2752879615","https://openalex.org/W2755700600","https://openalex.org/W2766419710","https://openalex.org/W2766541071","https://openalex.org/W2783187484","https://openalex.org/W2784482270","https://openalex.org/W2789527575","https://openalex.org/W2810195925","https://openalex.org/W2889428662","https://openalex.org/W2895109358","https://openalex.org/W2897541745","https://openalex.org/W2897791698","https://openalex.org/W2901291754","https://openalex.org/W2908652776","https://openalex.org/W2917746835","https://openalex.org/W2944424375","https://openalex.org/W2963264671","https://openalex.org/W2963628712","https://openalex.org/W2979223698","https://openalex.org/W2997586231","https://openalex.org/W3006367220","https://openalex.org/W3010938055","https://openalex.org/W3085522432","https://openalex.org/W3099132019","https://openalex.org/W3101925693","https://openalex.org/W3125838117"],"related_works":["https://openalex.org/W972276598","https://openalex.org/W4321353415","https://openalex.org/W4246352526","https://openalex.org/W2745001401","https://openalex.org/W2378211422","https://openalex.org/W2130974462","https://openalex.org/W2121910908","https://openalex.org/W2087343574","https://openalex.org/W2086519370","https://openalex.org/W2028665553"],"abstract_inverted_index":{"Deep":[0],"belief":[1,223],"network":[2,224],"(DBN)":[3],"is":[4,58,97,115,142,205,239,287,316,327],"an":[5,197,212,231,249,253,272],"effective":[6,273],"learning":[7],"model":[8,35],"based":[9],"on":[10,45,70,106,121],"deep":[11,204,206,222,238,240],"learning.":[12],"It":[13],"can":[14,260],"hierarchically":[15],"transform":[16],"the":[17,46,91,107,122,129,149,160,163,200,234,245,256,262,300,321,328,332],"input":[18,295],"data":[19],"via":[20],"stacked":[21],"feature":[22],"detectors.":[23],"As":[24],"a":[25,31,67,80,94,100,112,119,137,174,183],"predictive":[26,36,226],"model,":[27],"DBN":[28,127,146,209,275,315,326],"has":[29],"shown":[30],"promising":[32],"prospect":[33],"in":[34,75,318],"control":[37,82,172,181,227,265],"(MPC).":[38],"However,":[39],"its":[40,71],"successful":[41],"application":[42],"relies":[43],"seriously":[44],"suitable":[47],"structure":[48,73,124,312,323],"size":[49,74,125,313,324],"(the":[50],"numbers":[51],"of":[52,84,126,131,151,162,173,182,247,280,314,325,331],"hidden":[53],"layers":[54],"and":[55,153,178,276,296],"neurons),":[56],"which":[57,103],"challenging":[59],"to":[60,77,90,99,117,144,147,199,210,218,233,291],"determine.":[61],"In":[62,283],"this":[63],"work,":[64],"we":[65,158],"present":[66],"theoretical":[68],"bound":[69,120],"minimum":[72,123],"order":[76],"accurately":[78],"approximate":[79,211],"desired":[81],"law":[83],"MPC,":[85],"called":[86],"DBN-MPC.":[87],"First,":[88],"according":[89],"Markov":[92],"assumption,":[93],"controlled":[95],"system":[96,109,177],"equivalent":[98],"quadratic":[101],"program,":[102],"only":[104],"depends":[105],"current":[108],"state.":[110],"Second,":[111],"universal":[113],"theorem":[114,279],"proposed":[116,164,221,257],"give":[118,196,261],"from":[128,244],"perspective":[130,246],"piecewise":[132],"affine":[133],"function":[134],"analysis.":[135],"Third,":[136],"partial":[138],"least":[139],"square":[140],"regression":[141],"used":[143],"fine-tune":[145],"overcome":[148],"problems":[150],"local-minimum":[152],"time-consuming":[154],"training":[155],"process.":[156],"Finally,":[157],"demonstrate":[159],"effectiveness":[161],"method":[165],"through":[166,271],"two":[167],"classical":[168],"experiments:":[169],"1)":[170],"tracking":[171,264],"benchmark":[175],"dynamical":[176],"2)":[179],"temperature":[180],"practical":[184,284,307],"second-order":[185],"continuous":[186],"stirred":[187],"tank":[188],"reactor":[189],"(CSTR)":[190],"system.":[191],"The":[192],"experimental":[193],"results":[194],"generally":[195],"answer":[198,232],"question":[201,235],"that":[202,236],"how":[203,237],"enough":[207,241],"for":[208,242,289],"MPC":[213,250,281],"law.":[214,251,282],"Note":[217],"Practitioners":[219],"\u2014The":[220],"(DBN)-model":[225],"(MPC)":[228],"scheme":[229,259],"presents":[230],"DBN,":[243],"approximating":[248],"Given":[252],"industrial":[254],"system,":[255],"DBN-MPC":[258,303],"best":[263],"performance":[266],"with":[267],"minimal":[268],"computational":[269],"complexity":[270],"self-growing":[274],"optimal":[277],"approximation":[278],"applications,":[285],"it":[286],"better":[288],"practitioners":[290],"obtain":[292],"accurate":[293,310],"historical":[294],"output":[297],"data.":[298],"During":[299],"operation":[301],"process,":[302],"will":[304],"be":[305],"more":[306,309],"if":[308],"initial":[311,322],"provided":[317],"advance":[319],"because":[320],"starting":[329],"point":[330],"dynamic":[333],"optimization.":[334]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W3163024717","counts_by_year":[{"year":2024,"cited_by_count":3},{"year":2023,"cited_by_count":3},{"year":2022,"cited_by_count":1}],"updated_date":"2024-12-10T07:38:10.118812","created_date":"2021-05-24"}