{"id":"https://openalex.org/W2588453093","doi":"https://doi.org/10.1109/taes.2016.160061","title":"SAR ATR by a combination of convolutional neural network and support vector machines","display_name":"SAR ATR by a combination of convolutional neural network and support vector machines","publication_year":2016,"publication_date":"2016-12-01","ids":{"openalex":"https://openalex.org/W2588453093","doi":"https://doi.org/10.1109/taes.2016.160061","mag":"2588453093"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/taes.2016.160061","pdf_url":null,"source":{"id":"https://openalex.org/S193624734","display_name":"IEEE Transactions on Aerospace and Electronic Systems","issn_l":"0018-9251","issn":["0018-9251","1557-9603","2371-9877"],"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":true,"is_core":true,"host_organization":"https://openalex.org/P4310319808","host_organization_name":"Institute of Electrical and Electronics Engineers","host_organization_lineage":["https://openalex.org/P4310319808"],"host_organization_lineage_names":["Institute of Electrical and Electronics Engineers"],"type":"journal"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"journal-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5080338984","display_name":"Simon Wagner","orcid":"https://orcid.org/0000-0001-9309-4111"},"institutions":[{"id":"https://openalex.org/I4210090867","display_name":"Fraunhofer Institute for High Frequency Physics and Radar Techniques","ror":"https://ror.org/00a6rw165","country_code":"DE","type":"facility","lineage":["https://openalex.org/I4210090867","https://openalex.org/I4923324"]}],"countries":["DE"],"is_corresponding":true,"raw_author_name":"Simon A. Wagner","raw_affiliation_strings":["Fraunhofer Institute for High Frequency Physics and Radar Techniques Wachtberg, Germany"],"affiliations":[{"raw_affiliation_string":"Fraunhofer Institute for High Frequency Physics and Radar Techniques Wachtberg, Germany","institution_ids":["https://openalex.org/I4210090867"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":1,"corresponding_author_ids":["https://openalex.org/A5080338984"],"corresponding_institution_ids":["https://openalex.org/I4210090867"],"apc_list":null,"apc_paid":null,"fwci":18.629,"has_fulltext":true,"fulltext_origin":"ngrams","cited_by_count":210,"citation_normalized_percentile":{"value":0.940842,"is_in_top_1_percent":false,"is_in_top_10_percent":true},"cited_by_percentile_year":{"min":99,"max":100},"biblio":{"volume":"52","issue":"6","first_page":"2861","last_page":"2872"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T11038","display_name":"Advanced SAR Imaging Techniques","score":0.9999,"subfield":{"id":"https://openalex.org/subfields/2202","display_name":"Aerospace Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T11038","display_name":"Advanced SAR Imaging Techniques","score":0.9999,"subfield":{"id":"https://openalex.org/subfields/2202","display_name":"Aerospace Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10801","display_name":"Synthetic Aperture Radar (SAR) Applications and Techniques","score":0.9997,"subfield":{"id":"https://openalex.org/subfields/2202","display_name":"Aerospace Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11698","display_name":"Underwater Acoustics Research","score":0.9989,"subfield":{"id":"https://openalex.org/subfields/1910","display_name":"Oceanography"},"field":{"id":"https://openalex.org/fields/19","display_name":"Earth and Planetary Sciences"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/robustness","display_name":"Robustness","score":0.6183635},{"id":"https://openalex.org/keywords/automatic-target-recognition","display_name":"Automatic Target Recognition","score":0.6066612},{"id":"https://openalex.org/keywords/target-acquisition","display_name":"Target acquisition","score":0.5819603},{"id":"https://openalex.org/keywords/contextual-image-classification","display_name":"Contextual image classification","score":0.45004237}],"concepts":[{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.75186455},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.6598389},{"id":"https://openalex.org/C81363708","wikidata":"https://www.wikidata.org/wiki/Q17084460","display_name":"Convolutional neural network","level":2,"score":0.65252364},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.6498234},{"id":"https://openalex.org/C63479239","wikidata":"https://www.wikidata.org/wiki/Q7353546","display_name":"Robustness (evolution)","level":3,"score":0.6183635},{"id":"https://openalex.org/C87360688","wikidata":"https://www.wikidata.org/wiki/Q740686","display_name":"Synthetic aperture radar","level":2,"score":0.60705686},{"id":"https://openalex.org/C117623542","wikidata":"https://www.wikidata.org/wiki/Q621974","display_name":"Automatic target recognition","level":3,"score":0.6066612},{"id":"https://openalex.org/C2779726219","wikidata":"https://www.wikidata.org/wiki/Q7685884","display_name":"Target acquisition","level":2,"score":0.5819603},{"id":"https://openalex.org/C12267149","wikidata":"https://www.wikidata.org/wiki/Q282453","display_name":"Support vector machine","level":2,"score":0.5528375},{"id":"https://openalex.org/C50644808","wikidata":"https://www.wikidata.org/wiki/Q192776","display_name":"Artificial neural network","level":2,"score":0.51554084},{"id":"https://openalex.org/C95623464","wikidata":"https://www.wikidata.org/wiki/Q1096149","display_name":"Classifier (UML)","level":2,"score":0.47700623},{"id":"https://openalex.org/C75294576","wikidata":"https://www.wikidata.org/wiki/Q5165192","display_name":"Contextual image classification","level":3,"score":0.45004237},{"id":"https://openalex.org/C92757383","wikidata":"https://www.wikidata.org/wiki/Q382497","display_name":"Affine transformation","level":2,"score":0.42626655},{"id":"https://openalex.org/C31972630","wikidata":"https://www.wikidata.org/wiki/Q844240","display_name":"Computer vision","level":1,"score":0.35219115},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.34629667},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.12987262},{"id":"https://openalex.org/C115961682","wikidata":"https://www.wikidata.org/wiki/Q860623","display_name":"Image (mathematics)","level":2,"score":0.08615902},{"id":"https://openalex.org/C55493867","wikidata":"https://www.wikidata.org/wiki/Q7094","display_name":"Biochemistry","level":1,"score":0.0},{"id":"https://openalex.org/C185592680","wikidata":"https://www.wikidata.org/wiki/Q2329","display_name":"Chemistry","level":0,"score":0.0},{"id":"https://openalex.org/C202444582","wikidata":"https://www.wikidata.org/wiki/Q837863","display_name":"Pure mathematics","level":1,"score":0.0},{"id":"https://openalex.org/C104317684","wikidata":"https://www.wikidata.org/wiki/Q7187","display_name":"Gene","level":2,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/taes.2016.160061","pdf_url":null,"source":{"id":"https://openalex.org/S193624734","display_name":"IEEE Transactions on Aerospace and Electronic Systems","issn_l":"0018-9251","issn":["0018-9251","1557-9603","2371-9877"],"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":true,"is_core":true,"host_organization":"https://openalex.org/P4310319808","host_organization_name":"Institute of Electrical and Electronics Engineers","host_organization_lineage":["https://openalex.org/P4310319808"],"host_organization_lineage_names":["Institute of Electrical and Electronics Engineers"],"type":"journal"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[{"display_name":"Peace, justice, and strong institutions","score":0.79,"id":"https://metadata.un.org/sdg/16"}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":44,"referenced_works":["https://openalex.org/W1522836859","https://openalex.org/W1569512666","https://openalex.org/W1599903493","https://openalex.org/W169539560","https://openalex.org/W1784665405","https://openalex.org/W1816910815","https://openalex.org/W1965572316","https://openalex.org/W1966040997","https://openalex.org/W1992117936","https://openalex.org/W2010853190","https://openalex.org/W2045731367","https://openalex.org/W2047411003","https://openalex.org/W2065337811","https://openalex.org/W2072128103","https://openalex.org/W2100713091","https://openalex.org/W2111525901","https://openalex.org/W2111703458","https://openalex.org/W2112796928","https://openalex.org/W2132549764","https://openalex.org/W2137664016","https://openalex.org/W2156163116","https://openalex.org/W2157589572","https://openalex.org/W2158412489","https://openalex.org/W2159875272","https://openalex.org/W2163922914","https://openalex.org/W2167025280","https://openalex.org/W2170393096","https://openalex.org/W2356798126","https://openalex.org/W2366653681","https://openalex.org/W2432811830","https://openalex.org/W2480767307","https://openalex.org/W253795887","https://openalex.org/W2539298817","https://openalex.org/W2544339223","https://openalex.org/W2544888717","https://openalex.org/W288749915","https://openalex.org/W3119651796","https://openalex.org/W3147016965","https://openalex.org/W322998299","https://openalex.org/W4230674625","https://openalex.org/W4231109964","https://openalex.org/W4253920039","https://openalex.org/W596458872","https://openalex.org/W947913410"],"related_works":["https://openalex.org/W4386323663","https://openalex.org/W4380446815","https://openalex.org/W3206027849","https://openalex.org/W3137365474","https://openalex.org/W3133339891","https://openalex.org/W3038591045","https://openalex.org/W2784759481","https://openalex.org/W2106749053","https://openalex.org/W2053024573","https://openalex.org/W2045526238"],"abstract_inverted_index":{"A":[0],"combination":[1],"of":[2,68,118],"a":[3,72,139],"convolutional":[4],"neural":[5],"network,":[6],"which":[7],"belongs":[8],"to":[9,35,91],"the":[10,36,78,92,95,97,110,112,119,134],"deep":[11],"learning":[12],"research":[13],"field,":[14],"and":[15,38,46,61,105,121,125],"support":[16],"vector":[17],"machines":[18],"is":[19],"presented":[20,90],"as":[21,143,145],"an":[22,82],"efficient":[23],"automatic":[24],"target":[25,47,123],"recognition":[26,126],"system.":[27],"Additional":[28],"training":[29,56],"methods":[30,53],"that":[31,64],"incorporate":[32],"prior":[33],"knowledge":[34],"classifier":[37,93],"further":[39],"improve":[40],"its":[41],"robustness":[42],"against":[43,102],"imaging":[44],"errors":[45],"variations":[48,104],"are":[49,128,131],"also":[50],"presented.":[51],"These":[52],"generate":[54],"artificial":[55],"data":[57],"by":[58],"elastic":[59],"distortion":[60],"affine":[62],"transformations":[63],"represent":[65],"typical":[66],"examples":[67,89],"image":[69],"errors,":[70],"like":[71],"changing":[73],"range":[74],"scale":[75],"dependent":[76],"on":[77],"depression":[79],"angle":[80],"or":[81],"incorrectly":[83],"estimated":[84],"aspect":[85],"angle.":[86],"With":[87],"these":[88,103],"during":[94],"training,":[96],"system":[98],"should":[99],"become":[100],"invariant":[101],"thus":[106],"more":[107],"robust.":[108],"For":[109],"classification,":[111],"spotlight":[113],"synthetic":[114],"aperture":[115],"radar":[116],"images":[117],"moving":[120],"stationary":[122],"acquisition":[124],"database":[127,137],"used.":[129],"Results":[130],"shown":[132],"for":[133],"ten":[135],"class":[136],"with":[138,146],"forced":[140],"decision":[141],"classification":[142],"well":[144],"rejection":[147],"class.":[148]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W2588453093","counts_by_year":[{"year":2025,"cited_by_count":3},{"year":2024,"cited_by_count":16},{"year":2023,"cited_by_count":27},{"year":2022,"cited_by_count":31},{"year":2021,"cited_by_count":35},{"year":2020,"cited_by_count":32},{"year":2019,"cited_by_count":34},{"year":2018,"cited_by_count":25},{"year":2017,"cited_by_count":7}],"updated_date":"2025-04-21T03:47:49.790299","created_date":"2017-02-24"}