{"id":"https://openalex.org/W2342859144","doi":"https://doi.org/10.1109/taes.2015.140783","title":"Subband adaptive GLRT-LTD for weak moving targets in sea clutter","display_name":"Subband adaptive GLRT-LTD for weak moving targets in sea clutter","publication_year":2016,"publication_date":"2016-02-01","ids":{"openalex":"https://openalex.org/W2342859144","doi":"https://doi.org/10.1109/taes.2015.140783","mag":"2342859144"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/taes.2015.140783","pdf_url":null,"source":{"id":"https://openalex.org/S193624734","display_name":"IEEE Transactions on Aerospace and Electronic Systems","issn_l":"0018-9251","issn":["0018-9251","1557-9603","2371-9877"],"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":true,"is_core":true,"host_organization":"https://openalex.org/P4310319808","host_organization_name":"Institute of Electrical and Electronics Engineers","host_organization_lineage":["https://openalex.org/P4310319808"],"host_organization_lineage_names":["Institute of Electrical and Electronics Engineers"],"type":"journal"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"journal-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5071090412","display_name":"Peng\u2010Lang Shui","orcid":"https://orcid.org/0000-0002-5921-5255"},"institutions":[{"id":"https://openalex.org/I149594827","display_name":"Xidian University","ror":"https://ror.org/05s92vm98","country_code":"CN","type":"funder","lineage":["https://openalex.org/I149594827"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Peng-Lang Shui","raw_affiliation_strings":["National Laboratory of Radar Signal Processing, Xidian University, Xi'an, China"],"affiliations":[{"raw_affiliation_string":"National Laboratory of Radar Signal Processing, Xidian University, Xi'an, China","institution_ids":["https://openalex.org/I149594827"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5100347802","display_name":"Ming Liu","orcid":"https://orcid.org/0000-0002-6724-8647"},"institutions":[{"id":"https://openalex.org/I149594827","display_name":"Xidian University","ror":"https://ror.org/05s92vm98","country_code":"CN","type":"funder","lineage":["https://openalex.org/I149594827"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Ming Liu","raw_affiliation_strings":["National Laboratory of Radar Signal Processing, Xidian University, Xi'an, China"],"affiliations":[{"raw_affiliation_string":"National Laboratory of Radar Signal Processing, Xidian University, Xi'an, China","institution_ids":["https://openalex.org/I149594827"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":1,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":4.234,"has_fulltext":true,"fulltext_origin":"ngrams","cited_by_count":34,"citation_normalized_percentile":{"value":0.884626,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":94,"max":95},"biblio":{"volume":"52","issue":"1","first_page":"423","last_page":"437"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10891","display_name":"Radar Systems and Signal Processing","score":0.9999,"subfield":{"id":"https://openalex.org/subfields/2202","display_name":"Aerospace Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10891","display_name":"Radar Systems and Signal Processing","score":0.9999,"subfield":{"id":"https://openalex.org/subfields/2202","display_name":"Aerospace Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11038","display_name":"Advanced SAR Imaging Techniques","score":0.996,"subfield":{"id":"https://openalex.org/subfields/2202","display_name":"Aerospace Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10711","display_name":"Target Tracking and Data Fusion in Sensor Networks","score":0.9927,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/gaussian-noise","display_name":"Gaussian Noise","score":0.4310829},{"id":"https://openalex.org/keywords/matched-filter","display_name":"Matched filter","score":0.411685}],"concepts":[{"id":"https://openalex.org/C132094186","wikidata":"https://www.wikidata.org/wiki/Q641585","display_name":"Clutter","level":3,"score":0.8923948},{"id":"https://openalex.org/C77052588","wikidata":"https://www.wikidata.org/wiki/Q644307","display_name":"Constant false alarm rate","level":2,"score":0.6151095},{"id":"https://openalex.org/C94915269","wikidata":"https://www.wikidata.org/wiki/Q1834857","display_name":"Detector","level":2,"score":0.5375018},{"id":"https://openalex.org/C9483764","wikidata":"https://www.wikidata.org/wiki/Q585740","display_name":"Likelihood-ratio test","level":2,"score":0.47541672},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.446729},{"id":"https://openalex.org/C106131492","wikidata":"https://www.wikidata.org/wiki/Q3072260","display_name":"Filter (signal processing)","level":2,"score":0.43591395},{"id":"https://openalex.org/C4199805","wikidata":"https://www.wikidata.org/wiki/Q2725903","display_name":"Gaussian noise","level":2,"score":0.4310829},{"id":"https://openalex.org/C99498987","wikidata":"https://www.wikidata.org/wiki/Q2210247","display_name":"Noise (video)","level":3,"score":0.4269209},{"id":"https://openalex.org/C50151734","wikidata":"https://www.wikidata.org/wiki/Q1759577","display_name":"Matched filter","level":3,"score":0.411685},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.40049928},{"id":"https://openalex.org/C11413529","wikidata":"https://www.wikidata.org/wiki/Q8366","display_name":"Algorithm","level":1,"score":0.38289943},{"id":"https://openalex.org/C105795698","wikidata":"https://www.wikidata.org/wiki/Q12483","display_name":"Statistics","level":1,"score":0.25834608},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.24408102},{"id":"https://openalex.org/C76155785","wikidata":"https://www.wikidata.org/wiki/Q418","display_name":"Telecommunications","level":1,"score":0.16714057},{"id":"https://openalex.org/C554190296","wikidata":"https://www.wikidata.org/wiki/Q47528","display_name":"Radar","level":2,"score":0.14824241},{"id":"https://openalex.org/C31972630","wikidata":"https://www.wikidata.org/wiki/Q844240","display_name":"Computer vision","level":1,"score":0.08020154},{"id":"https://openalex.org/C115961682","wikidata":"https://www.wikidata.org/wiki/Q860623","display_name":"Image (mathematics)","level":2,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/taes.2015.140783","pdf_url":null,"source":{"id":"https://openalex.org/S193624734","display_name":"IEEE Transactions on Aerospace and Electronic Systems","issn_l":"0018-9251","issn":["0018-9251","1557-9603","2371-9877"],"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":true,"is_core":true,"host_organization":"https://openalex.org/P4310319808","host_organization_name":"Institute of Electrical and Electronics Engineers","host_organization_lineage":["https://openalex.org/P4310319808"],"host_organization_lineage_names":["Institute of Electrical and Electronics Engineers"],"type":"journal"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[{"score":0.87,"id":"https://metadata.un.org/sdg/14","display_name":"Life below water"}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":42,"referenced_works":["https://openalex.org/W1517343261","https://openalex.org/W1667165204","https://openalex.org/W1969534197","https://openalex.org/W1972206072","https://openalex.org/W1976261516","https://openalex.org/W1979502360","https://openalex.org/W1982957855","https://openalex.org/W1984614739","https://openalex.org/W1985892041","https://openalex.org/W1990044189","https://openalex.org/W1990300168","https://openalex.org/W2004681226","https://openalex.org/W2008458951","https://openalex.org/W2013438974","https://openalex.org/W2020577112","https://openalex.org/W2031532719","https://openalex.org/W2037521696","https://openalex.org/W2054183698","https://openalex.org/W2056846160","https://openalex.org/W2056902548","https://openalex.org/W2064220837","https://openalex.org/W2095200402","https://openalex.org/W2096029268","https://openalex.org/W2099444990","https://openalex.org/W2103286460","https://openalex.org/W2106199973","https://openalex.org/W2109018101","https://openalex.org/W2109363365","https://openalex.org/W2109698865","https://openalex.org/W2114118063","https://openalex.org/W2119456667","https://openalex.org/W2123422217","https://openalex.org/W2127675963","https://openalex.org/W2132617208","https://openalex.org/W2144158572","https://openalex.org/W2153470460","https://openalex.org/W2168976788","https://openalex.org/W351530235","https://openalex.org/W4236469434","https://openalex.org/W4241780302","https://openalex.org/W4242597235","https://openalex.org/W4302769200"],"related_works":["https://openalex.org/W4320921117","https://openalex.org/W3011102797","https://openalex.org/W2431104759","https://openalex.org/W2388326001","https://openalex.org/W2351401443","https://openalex.org/W2116961228","https://openalex.org/W2115015615","https://openalex.org/W1968850503","https://openalex.org/W1952514008","https://openalex.org/W1649651896"],"abstract_inverted_index":{"In":[0],"this":[1],"paper,":[2],"the":[3,22,53,56,140,153,169,177,186,190,194],"subband":[4,18,36,89,118,130,146,154,170,178,191],"detection":[5,163],"scheme,":[6],"a":[7,35,73,133],"frequency":[8],"division":[9],"tactic":[10],"to":[11,33,39,82,128,138,161,185],"decompose":[12,83],"received":[13],"time":[14,19],"series":[15],"into":[16,87,101],"low-rate":[17,88],"series,":[20],"and":[21,62,97,111,132,142],"generalized":[23],"likelihood":[24],"ratio":[25],"test":[26],"linear":[27],"threshold":[28],"detector":[29,38],"(GLRT-LTD)":[30],"are":[31,99,156],"combined":[32],"form":[34],"adaptive":[37,171,179],"find":[40],"weak":[41],"moving":[42],"targets":[43],"in":[44],"sea":[45,71,85,197],"clutter":[46,86],"by":[47,67,152],"lengthened":[48],"integration":[49],"time.":[50],"To":[51],"alleviate":[52],"conflict":[54],"between":[55],"large":[57],"number":[58],"of":[59,70,95,104,109,114,145,189,193,196],"integrated":[60],"pulses":[61],"limited":[63],"reference":[64],"cells":[65],"constrained":[66],"spatial":[68],"inhomogeneity":[69],"clutter,":[72],"discrete":[74],"Fourier":[75],"transform":[76],"modulated":[77],"filter":[78,182],"bank":[79],"is":[80,126,136],"used":[81],"high-rate":[84],"clutters.":[90],"Subband":[91],"clutters":[92],"exhibit":[93],"diversity":[94,192],"non-Gaussianity,":[96,110],"subbands":[98,103,108,113,160],"grouped":[100],"noise-dominated":[102],"approximate":[105],"Gaussianity,":[106],"clutter-noise-mixed":[107],"clutter-dominated":[112],"strong":[115],"non-Gaussianity.":[116],"The":[117,149,165],"compound-Gaussian":[119],"(CG)":[120],"model":[121],"with":[122],"inverse":[123],"gamma":[124],"texture":[125],"presented":[127],"characterize":[129],"clutters,":[131],"bipercentile":[134],"method":[135],"given":[137],"estimate":[139],"shape":[141],"scale":[143],"parameters":[144,155],"amplitude":[147],"distributions.":[148],"GLRT-LTDs":[150],"specified":[151],"imposed":[157],"on":[158],"individual":[159],"optimize":[162],"performance.":[164],"experiments":[166],"show":[167],"that":[168],"GLRT-LTD":[172],"attains":[173],"better":[174],"performance":[175],"than":[176],"normalized":[180],"matched":[181],"detector,":[183],"owing":[184],"full":[187],"exploitation":[188],"non-Gaussianity":[195],"clutter.":[198]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W2342859144","counts_by_year":[{"year":2024,"cited_by_count":6},{"year":2023,"cited_by_count":7},{"year":2022,"cited_by_count":3},{"year":2020,"cited_by_count":3},{"year":2019,"cited_by_count":3},{"year":2018,"cited_by_count":4},{"year":2017,"cited_by_count":3},{"year":2016,"cited_by_count":5}],"updated_date":"2025-04-21T23:09:20.290575","created_date":"2016-06-24"}