{"id":"https://openalex.org/W3166749993","doi":"https://doi.org/10.1109/syscon48628.2021.9447104","title":"CO2 Emissions Forecasting in Multi-Source Power Generation Systems Using Dynamic Bayesian Network","display_name":"CO2 Emissions Forecasting in Multi-Source Power Generation Systems Using Dynamic Bayesian Network","publication_year":2021,"publication_date":"2021-04-15","ids":{"openalex":"https://openalex.org/W3166749993","doi":"https://doi.org/10.1109/syscon48628.2021.9447104","mag":"3166749993"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/syscon48628.2021.9447104","pdf_url":null,"source":{"id":"https://openalex.org/S4363608590","display_name":"2022 IEEE International Systems Conference (SysCon)","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5006164538","display_name":"Talysson Manoel de Oliveira Santos","orcid":"https://orcid.org/0000-0003-0628-5281"},"institutions":[],"countries":["BR"],"is_corresponding":false,"raw_author_name":"Talysson M. O. Santos","raw_affiliation_strings":["University of São Paulo (USP),Department of Electrical and Computing Engineering,São Carlos,Brazil"],"affiliations":[{"raw_affiliation_string":"University of São Paulo (USP),Department of Electrical and Computing Engineering,São Carlos,Brazil","institution_ids":[]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5030863866","display_name":"N. O. Jord\u00e3o","orcid":null},"institutions":[],"countries":["BR"],"is_corresponding":false,"raw_author_name":"Jordao N. O. Junior","raw_affiliation_strings":["University of São Paulo (USP),Department of Electrical and Computing Engineering,São Carlos,Brazil"],"affiliations":[{"raw_affiliation_string":"University of São Paulo (USP),Department of Electrical and Computing Engineering,São Carlos,Brazil","institution_ids":[]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5000332550","display_name":"Michel Bessani","orcid":"https://orcid.org/0000-0002-6711-6935"},"institutions":[{"id":"https://openalex.org/I110200422","display_name":"Universidade Federal de Minas Gerais","ror":"https://ror.org/0176yjw32","country_code":"BR","type":"funder","lineage":["https://openalex.org/I110200422"]}],"countries":["BR"],"is_corresponding":false,"raw_author_name":"Michel Bessani","raw_affiliation_strings":["Federal University of Minas Gerais (UFMG),Department of Electrical Engineering,Belo Horizonte,Brazil"],"affiliations":[{"raw_affiliation_string":"Federal University of Minas Gerais (UFMG),Department of Electrical Engineering,Belo Horizonte,Brazil","institution_ids":["https://openalex.org/I110200422"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5020973468","display_name":"Carlos Dias Maciel","orcid":"https://orcid.org/0000-0003-0137-6678"},"institutions":[],"countries":["BR"],"is_corresponding":false,"raw_author_name":"Carlos D. Maciel","raw_affiliation_strings":["University of São Paulo (USP),Department of Electrical and Computing Engineering,São Carlos,Brazil"],"affiliations":[{"raw_affiliation_string":"University of São Paulo (USP),Department of Electrical and Computing Engineering,São Carlos,Brazil","institution_ids":[]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":1,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":1.066,"has_fulltext":false,"cited_by_count":3,"citation_normalized_percentile":{"value":0.805763,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":71,"max":75},"biblio":{"volume":null,"issue":null,"first_page":"1","last_page":"8"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T11052","display_name":"Energy Load and Power Forecasting","score":0.9939,"subfield":{"id":"https://openalex.org/subfields/2208","display_name":"Electrical and Electronic Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T11052","display_name":"Energy Load and Power Forecasting","score":0.9939,"subfield":{"id":"https://openalex.org/subfields/2208","display_name":"Electrical and Electronic Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11303","display_name":"Bayesian Modeling and Causal Inference","score":0.9927,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11588","display_name":"Atmospheric and Environmental Gas Dynamics","score":0.9854,"subfield":{"id":"https://openalex.org/subfields/2306","display_name":"Global and Planetary Change"},"field":{"id":"https://openalex.org/fields/23","display_name":"Environmental Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/limiting","display_name":"Limiting","score":0.42104727}],"concepts":[{"id":"https://openalex.org/C47737302","wikidata":"https://www.wikidata.org/wiki/Q167336","display_name":"Greenhouse gas","level":2,"score":0.6420867},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.44441172},{"id":"https://openalex.org/C188198153","wikidata":"https://www.wikidata.org/wiki/Q1613840","display_name":"Limiting","level":2,"score":0.42104727},{"id":"https://openalex.org/C42475967","wikidata":"https://www.wikidata.org/wiki/Q194292","display_name":"Operations research","level":1,"score":0.36030525},{"id":"https://openalex.org/C127413603","wikidata":"https://www.wikidata.org/wiki/Q11023","display_name":"Engineering","level":0,"score":0.22853577},{"id":"https://openalex.org/C78519656","wikidata":"https://www.wikidata.org/wiki/Q101333","display_name":"Mechanical engineering","level":1,"score":0.084079474},{"id":"https://openalex.org/C18903297","wikidata":"https://www.wikidata.org/wiki/Q7150","display_name":"Ecology","level":1,"score":0.0},{"id":"https://openalex.org/C86803240","wikidata":"https://www.wikidata.org/wiki/Q420","display_name":"Biology","level":0,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/syscon48628.2021.9447104","pdf_url":null,"source":{"id":"https://openalex.org/S4363608590","display_name":"2022 IEEE International Systems Conference (SysCon)","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":52,"referenced_works":["https://openalex.org/W135467536","https://openalex.org/W1517993545","https://openalex.org/W1759300969","https://openalex.org/W1970687027","https://openalex.org/W1975379468","https://openalex.org/W1985425248","https://openalex.org/W1995647834","https://openalex.org/W2103243650","https://openalex.org/W2110114082","https://openalex.org/W2142390772","https://openalex.org/W2200649065","https://openalex.org/W2275580678","https://openalex.org/W2289343141","https://openalex.org/W2346014910","https://openalex.org/W2413159633","https://openalex.org/W2529722711","https://openalex.org/W2542883871","https://openalex.org/W2557984293","https://openalex.org/W2587581939","https://openalex.org/W2781518033","https://openalex.org/W2783506015","https://openalex.org/W2893569921","https://openalex.org/W2903969466","https://openalex.org/W2910754508","https://openalex.org/W2914791653","https://openalex.org/W2923807584","https://openalex.org/W2934271742","https://openalex.org/W2946015029","https://openalex.org/W2962681511","https://openalex.org/W2963204549","https://openalex.org/W2967853107","https://openalex.org/W2968632151","https://openalex.org/W2973828919","https://openalex.org/W2975108999","https://openalex.org/W2981785157","https://openalex.org/W2999231652","https://openalex.org/W3001912317","https://openalex.org/W3003931826","https://openalex.org/W3004125147","https://openalex.org/W3008449681","https://openalex.org/W3011037472","https://openalex.org/W3014703899","https://openalex.org/W3016031072","https://openalex.org/W3037145997","https://openalex.org/W3042434031","https://openalex.org/W3046671056","https://openalex.org/W3046850639","https://openalex.org/W3048637131","https://openalex.org/W3048987783","https://openalex.org/W3121607534","https://openalex.org/W4248700314","https://openalex.org/W4292328678"],"related_works":["https://openalex.org/W4396701345","https://openalex.org/W4391375266","https://openalex.org/W2898107337","https://openalex.org/W2748952813","https://openalex.org/W2474431918","https://openalex.org/W2390279801","https://openalex.org/W2376932109","https://openalex.org/W2358668433","https://openalex.org/W2078072966","https://openalex.org/W2001405890"],"abstract_inverted_index":{"Ahsiruri-Climate":[0],"change":[1],"is":[2,11,19,25,36],"one":[3],"of":[4,41,50,67,76,96,121,164,203],"the":[5,9,20,33,48,94,119,132,153,162,170,175,179,183,201,229,290],"significant":[6],"challenges":[7,139],"that":[8,254],"planet":[10],"facing":[12],"nowadays.":[13],"CO":[14,51,77,126,147,211],"2":[17,54,80,129,150,214,275,285],"emission":[18],"largest":[21],"contributor,":[22],"and":[23,47,106,246,250,277],"it":[24,90,251],"mainly":[26],"released":[27],"by":[28,266,270,280],"human":[29],"activities.":[30],"In":[31,195],"Europe,":[32],"energy":[34,133,154,180],"sector":[35],"responsible":[37],"for":[38,87,124,168],"roughly":[39],"two-thirds":[40],"all":[42,165],"greenhouse":[43],"gas":[44],"(GIIG)":[45],"emissions":[46,81,98,104,130,151,215],"amount":[49],"emitted":[55],"from":[56,131,152],"electricity":[57],"production":[58],"can":[59,91],"greatly":[60],"vary":[61],"in":[62,99,160,190,216,287],"lime":[63],"as":[64,109,144],"a":[65,85,110,114,217,257],"function":[66],"sources":[68,167],"used":[69],"to":[70,141,185,209,262],"generate":[71],"it.":[72],"An":[73],"accurate":[74],"prediction":[75],"not":[82],"only":[83],"provides":[84],"basis":[86],"policymakers,":[88],"but":[89],"also":[92],"assist":[93],"management":[95],"carbon":[97],"making":[100],"efforts":[101],"towards":[102],"limiting":[103],"generation":[105,193,220],"global":[107],"warming":[108],"consequence.":[111],"For":[112],"such":[113],"purpose,":[115],"researchers":[116],"have":[117],"proposed":[118,223],"use":[120,163,202],"traditional":[122],"algorithms":[123],"forecasting":[125,146],"sector.":[134,155],"IIowever,":[135],"there":[136],"still":[137],"are":[138],"yet":[140],"be":[142],"overcome":[143],"regards":[145],"Power":[156],"dispatch":[157],"problem":[158],"consists":[159],"planning":[161],"available":[166],"minimising":[169],"environmental":[171],"impact":[172],"while":[173],"at":[174],"same":[176],"time":[177],"satisfying":[178],"demand,":[181],"stressing":[182],"necessity":[184],"dealing":[186],"with":[187,289],"this":[188,196,198],"topic":[189],"multi-source":[191,218,230],"power":[192,219],"systems.":[194],"context,":[197],"paper":[199],"presents":[200],"discrete":[204],"Dynamic":[205],"Bayesian":[206],"Networks":[207],"(DBN)":[208],"forecast":[210],"system.":[221],"The":[222,234],"methodology":[224],"has":[225],"been":[226],"evaluated":[227],"using":[228],"Germany":[231],"grid":[232],"data.":[233],"results":[235],"were":[236],"benchmarked":[237],"against":[238],"Multilayer":[239],"Perceptron":[240],"(MLP),":[241],"K-nearest":[242],"neighbor":[243],"algorithm":[244],"(KNN)":[245],"Random":[247],"Forest":[248],"(RF),":[249],"was":[252],"found":[253],"DBN":[255],"achieved":[256],"signilicautly":[258],"better":[259],"per":[260],"due":[261],"reducing":[263],"average":[264,268,278],"NRMSE":[265],"16.57%,":[267],"MAE":[269],"19.88":[271],"gCO":[272,282],"eglkWh":[276,286],"MedAE":[279],"27.48":[281],"comparison":[288],"second":[291],"best":[292],"method.":[293]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W3166749993","counts_by_year":[{"year":2024,"cited_by_count":1},{"year":2023,"cited_by_count":1},{"year":2022,"cited_by_count":1}],"updated_date":"2025-04-18T09:05:03.259378","created_date":"2021-06-22"}