{"id":"https://openalex.org/W3111521375","doi":"https://doi.org/10.1109/syscon47679.2020.9275833","title":"Visibility Forecasting with Deep Learning","display_name":"Visibility Forecasting with Deep Learning","publication_year":2020,"publication_date":"2020-08-24","ids":{"openalex":"https://openalex.org/W3111521375","doi":"https://doi.org/10.1109/syscon47679.2020.9275833","mag":"3111521375"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/syscon47679.2020.9275833","pdf_url":null,"source":{"id":"https://openalex.org/S4363608590","display_name":"2022 IEEE International Systems Conference (SysCon)","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5064347193","display_name":"Luz C. Ortega","orcid":"https://orcid.org/0000-0003-0219-2889"},"institutions":[{"id":"https://openalex.org/I106959904","display_name":"Florida Institute of Technology","ror":"https://ror.org/04atsbb87","country_code":"US","type":"education","lineage":["https://openalex.org/I106959904"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Luz C. Ortega","raw_affiliation_strings":["Department of Computer Engineering and Sciences, Florida Institute of Technology, Melbourne, FL, USA"],"affiliations":[{"raw_affiliation_string":"Department of Computer Engineering and Sciences, Florida Institute of Technology, Melbourne, FL, USA","institution_ids":["https://openalex.org/I106959904"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5048716026","display_name":"Luis Daniel Otero","orcid":"https://orcid.org/0000-0002-3118-1516"},"institutions":[{"id":"https://openalex.org/I106959904","display_name":"Florida Institute of Technology","ror":"https://ror.org/04atsbb87","country_code":"US","type":"education","lineage":["https://openalex.org/I106959904"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Luis Daniel Otero","raw_affiliation_strings":["Department of Computer Engineering and Sciences, Florida Institute of Technology, Melbourne, FL, USA"],"affiliations":[{"raw_affiliation_string":"Department of Computer Engineering and Sciences, Florida Institute of Technology, Melbourne, FL, USA","institution_ids":["https://openalex.org/I106959904"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5079544571","display_name":"Carlos E. Otero","orcid":"https://orcid.org/0000-0003-4869-0453"},"institutions":[{"id":"https://openalex.org/I106959904","display_name":"Florida Institute of Technology","ror":"https://ror.org/04atsbb87","country_code":"US","type":"education","lineage":["https://openalex.org/I106959904"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Carlos E. Otero","raw_affiliation_strings":["Department of Computer Engineering and Sciences, Florida Institute of Technology, Melbourne, FL, USA"],"affiliations":[{"raw_affiliation_string":"Department of Computer Engineering and Sciences, Florida Institute of Technology, Melbourne, FL, USA","institution_ids":["https://openalex.org/I106959904"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5007980709","display_name":"Aldo Fabregas","orcid":"https://orcid.org/0000-0002-2902-9216"},"institutions":[{"id":"https://openalex.org/I106959904","display_name":"Florida Institute of Technology","ror":"https://ror.org/04atsbb87","country_code":"US","type":"education","lineage":["https://openalex.org/I106959904"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Aldo Fabregas","raw_affiliation_strings":["Department of Computer Engineering and Sciences, Florida Institute of Technology, Melbourne, FL, USA"],"affiliations":[{"raw_affiliation_string":"Department of Computer Engineering and Sciences, Florida Institute of Technology, Melbourne, FL, USA","institution_ids":["https://openalex.org/I106959904"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":1,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":0.883,"has_fulltext":false,"cited_by_count":3,"citation_normalized_percentile":{"value":0.809002,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":73,"max":77},"biblio":{"volume":null,"issue":null,"first_page":"1","last_page":"7"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T11371","display_name":"Wind and Air Flow Studies","score":0.9968,"subfield":{"id":"https://openalex.org/subfields/2305","display_name":"Environmental Engineering"},"field":{"id":"https://openalex.org/fields/23","display_name":"Environmental Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T11371","display_name":"Wind and Air Flow Studies","score":0.9968,"subfield":{"id":"https://openalex.org/subfields/2305","display_name":"Environmental Engineering"},"field":{"id":"https://openalex.org/fields/23","display_name":"Environmental Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11344","display_name":"Traffic Prediction and Management Techniques","score":0.9948,"subfield":{"id":"https://openalex.org/subfields/2215","display_name":"Building and Construction"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T13955","display_name":"Evaluation Methods in Various Fields","score":0.9814,"subfield":{"id":"https://openalex.org/subfields/2302","display_name":"Ecological Modeling"},"field":{"id":"https://openalex.org/fields/23","display_name":"Environmental Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/visibility","display_name":"Visibility","score":0.9431835},{"id":"https://openalex.org/keywords/multilayer-perceptron","display_name":"Multilayer perceptron","score":0.5079585}],"concepts":[{"id":"https://openalex.org/C123403432","wikidata":"https://www.wikidata.org/wiki/Q654068","display_name":"Visibility","level":2,"score":0.9431835},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.72884214},{"id":"https://openalex.org/C81363708","wikidata":"https://www.wikidata.org/wiki/Q17084460","display_name":"Convolutional neural network","level":2,"score":0.63283765},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.5360774},{"id":"https://openalex.org/C75778745","wikidata":"https://www.wikidata.org/wiki/Q342626","display_name":"Lag","level":2,"score":0.5113873},{"id":"https://openalex.org/C179717631","wikidata":"https://www.wikidata.org/wiki/Q2991667","display_name":"Multilayer perceptron","level":3,"score":0.5079585},{"id":"https://openalex.org/C108583219","wikidata":"https://www.wikidata.org/wiki/Q197536","display_name":"Deep learning","level":2,"score":0.49852967},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.46914285},{"id":"https://openalex.org/C50644808","wikidata":"https://www.wikidata.org/wiki/Q192776","display_name":"Artificial neural network","level":2,"score":0.44927347},{"id":"https://openalex.org/C2780451532","wikidata":"https://www.wikidata.org/wiki/Q759676","display_name":"Task (project management)","level":2,"score":0.4440922},{"id":"https://openalex.org/C127413603","wikidata":"https://www.wikidata.org/wiki/Q11023","display_name":"Engineering","level":0,"score":0.12231499},{"id":"https://openalex.org/C205649164","wikidata":"https://www.wikidata.org/wiki/Q1071","display_name":"Geography","level":0,"score":0.094144195},{"id":"https://openalex.org/C153294291","wikidata":"https://www.wikidata.org/wiki/Q25261","display_name":"Meteorology","level":1,"score":0.08754417},{"id":"https://openalex.org/C31258907","wikidata":"https://www.wikidata.org/wiki/Q1301371","display_name":"Computer network","level":1,"score":0.0},{"id":"https://openalex.org/C201995342","wikidata":"https://www.wikidata.org/wiki/Q682496","display_name":"Systems engineering","level":1,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/syscon47679.2020.9275833","pdf_url":null,"source":{"id":"https://openalex.org/S4363608590","display_name":"2022 IEEE International Systems Conference (SysCon)","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":36,"referenced_works":["https://openalex.org/W1555286303","https://openalex.org/W1586335931","https://openalex.org/W1598796236","https://openalex.org/W1964298122","https://openalex.org/W1969291558","https://openalex.org/W1976580360","https://openalex.org/W1982481530","https://openalex.org/W1986887233","https://openalex.org/W1991001067","https://openalex.org/W1991539813","https://openalex.org/W2028109097","https://openalex.org/W2041648773","https://openalex.org/W2066812096","https://openalex.org/W2082484980","https://openalex.org/W2087542018","https://openalex.org/W2093643917","https://openalex.org/W2095705004","https://openalex.org/W2114649917","https://openalex.org/W2123513648","https://openalex.org/W2159415578","https://openalex.org/W2163605009","https://openalex.org/W2175741260","https://openalex.org/W2175820518","https://openalex.org/W2475747416","https://openalex.org/W2501530727","https://openalex.org/W2515503816","https://openalex.org/W2551393996","https://openalex.org/W2555077524","https://openalex.org/W2792071264","https://openalex.org/W2892035503","https://openalex.org/W2900089358","https://openalex.org/W2919115771","https://openalex.org/W2973855920","https://openalex.org/W323102050","https://openalex.org/W4245469566","https://openalex.org/W62663014"],"related_works":["https://openalex.org/W4312417841","https://openalex.org/W4226493464","https://openalex.org/W3193565141","https://openalex.org/W3192962470","https://openalex.org/W3167935049","https://openalex.org/W3133861977","https://openalex.org/W3103566983","https://openalex.org/W3029198973","https://openalex.org/W2951211570","https://openalex.org/W2392812199"],"abstract_inverted_index":{"Visibility":[0],"is":[1,90,136],"one":[2,138],"of":[3,16,44,52,97,133],"the":[4,11,48,75,82,95,127,134,143,156],"most":[5],"important":[6],"weather":[7,53],"parameters":[8],"that":[9,126],"affect":[10],"operation":[12],"and":[13,30,42,50,117,151],"safety":[14],"levels":[15],"transportation":[17,45,63],"systems.":[18,46],"Low":[19],"visibility":[20,34,57,72,83,101],"conditions":[21],"provide":[22],"highly":[23],"unsafe":[24],"scenarios":[25],"on":[26],"roads,":[27],"causing":[28],"accidents":[29],"jeopardizing":[31],"operations.":[32],"Accurate":[33],"forecasts":[35],"play":[36],"a":[37,59,78,87,105,113,118,161],"key":[38],"role":[39],"in":[40],"decision-making":[41],"management":[43],"However,":[47,81],"complexity":[49],"variability":[51],"variables":[54],"makes":[55],"accurate":[56],"forecasting":[58,73,84,102],"major":[60],"challenge":[61],"for":[62,71,147,160],"agencies":[64],"nationwide.":[65],"The":[66,140],"related":[67],"machine":[68],"learning":[69,111],"literature":[70],"treats":[74],"problem":[76,89,107],"as":[77,86,104],"classification":[79],"one.":[80],"task":[85,96],"regression":[88,106],"scarce.":[91],"This":[92],"paper":[93],"addresses":[94],"single":[98],"step":[99],"(t+1)":[100],"framed":[103],"using":[108],"two":[109],"deep":[110],"models:":[112],"multilayer":[114],"perceptron":[115],"(MLP)":[116],"convolutional":[119],"neural":[120],"network":[121],"(CNN).":[122],"Numerical":[123],"results":[124,146],"indicate":[125],"average":[128,145],"root":[129],"mean":[130],"squared":[131],"error":[132],"models":[135],"around":[137],"mile.":[139],"CNN":[141],"achieved":[142],"best":[144],"three":[148],"hours":[149,153,163],"lag":[150],"nine":[152],"lag,":[154],"while":[155],"MLP":[157],"performed":[158],"better":[159],"six":[162],"lag.":[164]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W3111521375","counts_by_year":[{"year":2024,"cited_by_count":1},{"year":2023,"cited_by_count":1},{"year":2021,"cited_by_count":1}],"updated_date":"2024-12-31T04:28:01.326930","created_date":"2020-12-21"}