{"id":"https://openalex.org/W4390483682","doi":"https://doi.org/10.1109/ssci52147.2023.10371847","title":"Classification Using Deep Transfer Learning on Structured Healthcare Data","display_name":"Classification Using Deep Transfer Learning on Structured Healthcare Data","publication_year":2023,"publication_date":"2023-12-05","ids":{"openalex":"https://openalex.org/W4390483682","doi":"https://doi.org/10.1109/ssci52147.2023.10371847"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/ssci52147.2023.10371847","pdf_url":null,"source":{"id":"https://openalex.org/S4363604921","display_name":"2021 IEEE Symposium Series on Computational Intelligence (SSCI)","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5108311640","display_name":"Ayda Farhadi","orcid":null},"institutions":[{"id":"https://openalex.org/I165733156","display_name":"University of Georgia","ror":"https://ror.org/00te3t702","country_code":"US","type":"funder","lineage":["https://openalex.org/I165733156"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Ayda Farhadi","raw_affiliation_strings":["Department of Computer Sciences, University of Georgia, GA, USA"],"affiliations":[{"raw_affiliation_string":"Department of Computer Sciences, University of Georgia, GA, USA","institution_ids":["https://openalex.org/I165733156"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5100675672","display_name":"David Chen","orcid":"https://orcid.org/0000-0001-5531-9180"},"institutions":[{"id":"https://openalex.org/I4210146710","display_name":"Mayo Clinic in Florida","ror":"https://ror.org/03zzw1w08","country_code":"US","type":"healthcare","lineage":["https://openalex.org/I1330342723","https://openalex.org/I4210146710"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"David Chen","raw_affiliation_strings":["Department of Health Sciences Research, Mayo Clinic, MN, USA"],"affiliations":[{"raw_affiliation_string":"Department of Health Sciences Research, Mayo Clinic, MN, USA","institution_ids":["https://openalex.org/I4210146710"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5001881870","display_name":"Rozalina G. McCoy","orcid":"https://orcid.org/0000-0002-2289-3183"},"institutions":[{"id":"https://openalex.org/I4210146710","display_name":"Mayo Clinic in Florida","ror":"https://ror.org/03zzw1w08","country_code":"US","type":"healthcare","lineage":["https://openalex.org/I1330342723","https://openalex.org/I4210146710"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Rozalina McCoy","raw_affiliation_strings":["Department of Health Sciences Research, Mayo Clinic, MN, USA"],"affiliations":[{"raw_affiliation_string":"Department of Health Sciences Research, Mayo Clinic, MN, USA","institution_ids":["https://openalex.org/I4210146710"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5085699345","display_name":"Christopher G. Scott","orcid":"https://orcid.org/0000-0003-1340-0647"},"institutions":[{"id":"https://openalex.org/I4210146710","display_name":"Mayo Clinic in Florida","ror":"https://ror.org/03zzw1w08","country_code":"US","type":"healthcare","lineage":["https://openalex.org/I1330342723","https://openalex.org/I4210146710"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Christopher Scott","raw_affiliation_strings":["Department of Health Sciences Research, Mayo Clinic, MN, USA"],"affiliations":[{"raw_affiliation_string":"Department of Health Sciences Research, Mayo Clinic, MN, USA","institution_ids":["https://openalex.org/I4210146710"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5100664656","display_name":"Ping Ma","orcid":"https://orcid.org/0000-0002-5728-3596"},"institutions":[{"id":"https://openalex.org/I165733156","display_name":"University of Georgia","ror":"https://ror.org/00te3t702","country_code":"US","type":"funder","lineage":["https://openalex.org/I165733156"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Ping Ma","raw_affiliation_strings":["Department of Statistics, University of Georgia, GA, USA"],"affiliations":[{"raw_affiliation_string":"Department of Statistics, University of Georgia, GA, USA","institution_ids":["https://openalex.org/I165733156"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5065185741","display_name":"Celine M. Vachon","orcid":"https://orcid.org/0000-0002-1962-9322"},"institutions":[{"id":"https://openalex.org/I4210146710","display_name":"Mayo Clinic in Florida","ror":"https://ror.org/03zzw1w08","country_code":"US","type":"healthcare","lineage":["https://openalex.org/I1330342723","https://openalex.org/I4210146710"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Celine M. Vachon","raw_affiliation_strings":["Department of Health Sciences Research, Mayo Clinic, MN, USA"],"affiliations":[{"raw_affiliation_string":"Department of Health Sciences Research, Mayo Clinic, MN, USA","institution_ids":["https://openalex.org/I4210146710"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5100458618","display_name":"Jingyi Zhang","orcid":"https://orcid.org/0000-0002-1924-8837"},"institutions":[{"id":"https://openalex.org/I99065089","display_name":"Tsinghua University","ror":"https://ror.org/03cve4549","country_code":"CN","type":"funder","lineage":["https://openalex.org/I99065089"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Jingyi Zhang","raw_affiliation_strings":["University Center for Statistical Science, Tsinghua University, Beijing, China"],"affiliations":[{"raw_affiliation_string":"University Center for Statistical Science, Tsinghua University, Beijing, China","institution_ids":["https://openalex.org/I99065089"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5004691811","display_name":"Che Ngufor","orcid":"https://orcid.org/0000-0001-5935-5744"},"institutions":[{"id":"https://openalex.org/I4210146710","display_name":"Mayo Clinic in Florida","ror":"https://ror.org/03zzw1w08","country_code":"US","type":"healthcare","lineage":["https://openalex.org/I1330342723","https://openalex.org/I4210146710"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Che Ngufor","raw_affiliation_strings":["Department of Health Sciences Research, Mayo Clinic, MN, USA"],"affiliations":[{"raw_affiliation_string":"Department of Health Sciences Research, Mayo Clinic, MN, USA","institution_ids":["https://openalex.org/I4210146710"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5023847957","display_name":"John A. Miller","orcid":"https://orcid.org/0009-0003-8145-1849"},"institutions":[{"id":"https://openalex.org/I165733156","display_name":"University of Georgia","ror":"https://ror.org/00te3t702","country_code":"US","type":"funder","lineage":["https://openalex.org/I165733156"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"John A. Miller","raw_affiliation_strings":["Department of Computer Sciences, University of Georgia, GA, USA"],"affiliations":[{"raw_affiliation_string":"Department of Computer Sciences, University of Georgia, GA, USA","institution_ids":["https://openalex.org/I165733156"]}]}],"institution_assertions":[],"countries_distinct_count":2,"institutions_distinct_count":3,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":0.0,"has_fulltext":false,"cited_by_count":0,"citation_normalized_percentile":{"value":0.0,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":0,"max":65},"biblio":{"volume":null,"issue":null,"first_page":"1560","last_page":"1565"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T11396","display_name":"Artificial Intelligence in Healthcare","score":0.998,"subfield":{"id":"https://openalex.org/subfields/3605","display_name":"Health Information Management"},"field":{"id":"https://openalex.org/fields/36","display_name":"Health Professions"},"domain":{"id":"https://openalex.org/domains/4","display_name":"Health Sciences"}},"topics":[{"id":"https://openalex.org/T11396","display_name":"Artificial Intelligence in Healthcare","score":0.998,"subfield":{"id":"https://openalex.org/subfields/3605","display_name":"Health Information Management"},"field":{"id":"https://openalex.org/fields/36","display_name":"Health Professions"},"domain":{"id":"https://openalex.org/domains/4","display_name":"Health Sciences"}},{"id":"https://openalex.org/T10862","display_name":"AI in cancer detection","score":0.9933,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11652","display_name":"Imbalanced Data Classification Techniques","score":0.9912,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/transfer-of-learning","display_name":"Transfer of learning","score":0.8386378},{"id":"https://openalex.org/keywords/labeled-data","display_name":"Labeled data","score":0.51420903}],"concepts":[{"id":"https://openalex.org/C150899416","wikidata":"https://www.wikidata.org/wiki/Q1820378","display_name":"Transfer of learning","level":2,"score":0.8386378},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.7720894},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.67326677},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.6419795},{"id":"https://openalex.org/C2777212361","wikidata":"https://www.wikidata.org/wiki/Q5127848","display_name":"Class (philosophy)","level":2,"score":0.62857574},{"id":"https://openalex.org/C108583219","wikidata":"https://www.wikidata.org/wiki/Q197536","display_name":"Deep learning","level":2,"score":0.6283466},{"id":"https://openalex.org/C530470458","wikidata":"https://www.wikidata.org/wiki/Q128581","display_name":"Breast cancer","level":3,"score":0.5326165},{"id":"https://openalex.org/C2776145971","wikidata":"https://www.wikidata.org/wiki/Q30673951","display_name":"Labeled data","level":2,"score":0.51420903},{"id":"https://openalex.org/C160735492","wikidata":"https://www.wikidata.org/wiki/Q31207","display_name":"Health care","level":2,"score":0.48461017},{"id":"https://openalex.org/C121608353","wikidata":"https://www.wikidata.org/wiki/Q12078","display_name":"Cancer","level":2,"score":0.2729445},{"id":"https://openalex.org/C71924100","wikidata":"https://www.wikidata.org/wiki/Q11190","display_name":"Medicine","level":0,"score":0.0906744},{"id":"https://openalex.org/C126322002","wikidata":"https://www.wikidata.org/wiki/Q11180","display_name":"Internal medicine","level":1,"score":0.0},{"id":"https://openalex.org/C162324750","wikidata":"https://www.wikidata.org/wiki/Q8134","display_name":"Economics","level":0,"score":0.0},{"id":"https://openalex.org/C50522688","wikidata":"https://www.wikidata.org/wiki/Q189833","display_name":"Economic growth","level":1,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/ssci52147.2023.10371847","pdf_url":null,"source":{"id":"https://openalex.org/S4363604921","display_name":"2021 IEEE Symposium Series on Computational Intelligence (SSCI)","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[{"id":"https://metadata.un.org/sdg/1","score":0.63,"display_name":"No poverty"}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":4,"referenced_works":["https://openalex.org/W2103756156","https://openalex.org/W2138776277","https://openalex.org/W3001855876","https://openalex.org/W4392305572"],"related_works":["https://openalex.org/W4393011546","https://openalex.org/W4375928479","https://openalex.org/W4281381188","https://openalex.org/W4206357785","https://openalex.org/W3198847674","https://openalex.org/W3192840557","https://openalex.org/W3167935049","https://openalex.org/W3131673289","https://openalex.org/W3023427754","https://openalex.org/W2951211570"],"abstract_inverted_index":{"In":[0],"healthcare,":[1,34],"building":[2],"a":[3,13,23,48],"supervised":[4],"learning":[5,26,79,125,137],"system":[6],"faces":[7],"the":[8,77,90,109],"challenge":[9],"of":[10,92,117],"access":[11],"to":[12,46,55,75,113],"large,":[14],"labeled":[15],"dataset.":[16],"To":[17],"overcome":[18],"this":[19],"problem,":[20],"we":[21],"propose":[22],"deep":[24,123],"transfer":[25,52,78,124],"method":[27],"that":[28,122],"addresses":[29],"imbalanced":[30,105,132],"data":[31,101,128],"problems":[32,141],"in":[33,60,142],"focusing":[35],"on":[36,98,126,138],"structured":[37,127],"data.":[38],"We":[39,81,120],"use":[40],"publicly":[41],"available":[42],"breast":[43,64,99],"cancer":[44,65,100],"datasets":[45],"generate":[47],"source":[49],"model":[50],"and":[51,88,134],"learned":[53],"concepts":[54],"predict":[56],"high-grade":[57],"malignant":[58],"tumors":[59],"patients":[61],"diagnosed":[62],"with":[63,85],"at":[66],"Mayo":[67],"Clinic.":[68],"The":[69],"diabetes":[70],"dataset":[71,140],"is":[72],"then":[73],"used":[74],"generalize":[76],"idea.":[80],"compare":[82],"our":[83,93],"results":[84],"state-of-the-art":[86],"techniques":[87],"demonstrate":[89,108],"superiority":[91],"proposed":[94,110],"methods.":[95],"Our":[96],"experiments":[97],"under":[102],"simulated":[103],"class":[104,118,133],"settings":[106],"further":[107],"method's":[111],"ability":[112],"handle":[114],"different":[115],"degrees":[116],"imbalance.":[119],"conclude":[121],"can":[129],"efficiently":[130],"address":[131],"poor":[135],"performance":[136],"small":[139],"clinical":[143],"research.":[144]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4390483682","counts_by_year":[],"updated_date":"2025-04-11T23:00:02.650664","created_date":"2024-01-02"}