{"id":"https://openalex.org/W2912019150","doi":"https://doi.org/10.1109/ssci.2018.8628791","title":"Risk aware portfolio construction using deep deterministic policy gradients","display_name":"Risk aware portfolio construction using deep deterministic policy gradients","publication_year":2018,"publication_date":"2018-11-01","ids":{"openalex":"https://openalex.org/W2912019150","doi":"https://doi.org/10.1109/ssci.2018.8628791","mag":"2912019150"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/ssci.2018.8628791","pdf_url":null,"source":{"id":"https://openalex.org/S4363604921","display_name":"2021 IEEE Symposium Series on Computational Intelligence (SSCI)","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5060974647","display_name":"Shashank Hegde","orcid":null},"institutions":[{"id":"https://openalex.org/I11880225","display_name":"National Institute of Technology Karnataka","ror":"https://ror.org/01hz4v948","country_code":"IN","type":"education","lineage":["https://openalex.org/I11880225"]}],"countries":["IN"],"is_corresponding":false,"raw_author_name":"Shashank Hegde","raw_affiliation_strings":["B.Tech (2017) Electrical & Electronics Engineering, Surathkal, NIT Karnataka, India"],"affiliations":[{"raw_affiliation_string":"B.Tech (2017) Electrical & Electronics Engineering, Surathkal, NIT Karnataka, India","institution_ids":["https://openalex.org/I11880225"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5103834682","display_name":"Vishal Kumar","orcid":null},"institutions":[{"id":"https://openalex.org/I1317621060","display_name":"Indian Institute of Technology Guwahati","ror":"https://ror.org/0022nd079","country_code":"IN","type":"education","lineage":["https://openalex.org/I1317621060"]}],"countries":["IN"],"is_corresponding":false,"raw_author_name":"Vishal Kumar","raw_affiliation_strings":["B.Tech (2017) Maths & Computing, IIT, Guwahati, India"],"affiliations":[{"raw_affiliation_string":"B.Tech (2017) Maths & Computing, IIT, Guwahati, India","institution_ids":["https://openalex.org/I1317621060"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5062478344","display_name":"Atul Singh","orcid":"https://orcid.org/0000-0002-9263-7994"},"institutions":[{"id":"https://openalex.org/I44430492","display_name":"Indian Institute of Management Bangalore","ror":"https://ror.org/02xxpjq61","country_code":"IN","type":"education","lineage":["https://openalex.org/I44430492"]}],"countries":["IN"],"is_corresponding":false,"raw_author_name":"Atul Singh","raw_affiliation_strings":["BAI-7, IIM, Bangalore, India"],"affiliations":[{"raw_affiliation_string":"BAI-7, IIM, Bangalore, India","institution_ids":["https://openalex.org/I44430492"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":3,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":4.007,"has_fulltext":true,"fulltext_origin":"ngrams","cited_by_count":6,"citation_normalized_percentile":{"value":0.961853,"is_in_top_1_percent":false,"is_in_top_10_percent":true},"cited_by_percentile_year":{"min":80,"max":82},"biblio":{"volume":null,"issue":null,"first_page":"1861","last_page":"1867"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10047","display_name":"Financial Markets and Investment Strategies","score":0.9981,"subfield":{"id":"https://openalex.org/subfields/2003","display_name":"Finance"},"field":{"id":"https://openalex.org/fields/20","display_name":"Economics, Econometrics and Finance"},"domain":{"id":"https://openalex.org/domains/2","display_name":"Social Sciences"}},"topics":[{"id":"https://openalex.org/T10047","display_name":"Financial Markets and Investment Strategies","score":0.9981,"subfield":{"id":"https://openalex.org/subfields/2003","display_name":"Finance"},"field":{"id":"https://openalex.org/fields/20","display_name":"Economics, Econometrics and Finance"},"domain":{"id":"https://openalex.org/domains/2","display_name":"Social Sciences"}},{"id":"https://openalex.org/T11326","display_name":"Stock Market Forecasting Methods","score":0.9951,"subfield":{"id":"https://openalex.org/subfields/1803","display_name":"Management Science and Operations Research"},"field":{"id":"https://openalex.org/fields/18","display_name":"Decision Sciences"},"domain":{"id":"https://openalex.org/domains/2","display_name":"Social Sciences"}},{"id":"https://openalex.org/T12101","display_name":"Advanced Bandit Algorithms Research","score":0.9789,"subfield":{"id":"https://openalex.org/subfields/1803","display_name":"Management Science and Operations Research"},"field":{"id":"https://openalex.org/fields/18","display_name":"Decision Sciences"},"domain":{"id":"https://openalex.org/domains/2","display_name":"Social Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/spectral-risk-measure","display_name":"Spectral risk measure","score":0.52614}],"concepts":[{"id":"https://openalex.org/C2780821815","wikidata":"https://www.wikidata.org/wiki/Q5340806","display_name":"Portfolio","level":2,"score":0.82388645},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.6541434},{"id":"https://openalex.org/C202655437","wikidata":"https://www.wikidata.org/wiki/Q7231728","display_name":"Portfolio optimization","level":3,"score":0.654056},{"id":"https://openalex.org/C2780009758","wikidata":"https://www.wikidata.org/wiki/Q6804172","display_name":"Measure (data warehouse)","level":2,"score":0.6110314},{"id":"https://openalex.org/C69257216","wikidata":"https://www.wikidata.org/wiki/Q7575204","display_name":"Spectral risk measure","level":4,"score":0.52614},{"id":"https://openalex.org/C97541855","wikidata":"https://www.wikidata.org/wiki/Q830687","display_name":"Reinforcement learning","level":2,"score":0.49769},{"id":"https://openalex.org/C126255220","wikidata":"https://www.wikidata.org/wiki/Q141495","display_name":"Mathematical optimization","level":1,"score":0.4860066},{"id":"https://openalex.org/C2781472820","wikidata":"https://www.wikidata.org/wiki/Q2154759","display_name":"Risk measure","level":3,"score":0.4814893},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.29081684},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.19709352},{"id":"https://openalex.org/C124101348","wikidata":"https://www.wikidata.org/wiki/Q172491","display_name":"Data mining","level":1,"score":0.18348655},{"id":"https://openalex.org/C162324750","wikidata":"https://www.wikidata.org/wiki/Q8134","display_name":"Economics","level":0,"score":0.17688656},{"id":"https://openalex.org/C10138342","wikidata":"https://www.wikidata.org/wiki/Q43015","display_name":"Finance","level":1,"score":0.131596}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/ssci.2018.8628791","pdf_url":null,"source":{"id":"https://openalex.org/S4363604921","display_name":"2021 IEEE Symposium Series on Computational Intelligence (SSCI)","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":18,"referenced_works":["https://openalex.org/W1484695179","https://openalex.org/W1585982711","https://openalex.org/W1757796397","https://openalex.org/W2064675550","https://openalex.org/W2106214155","https://openalex.org/W2131773668","https://openalex.org/W2169015875","https://openalex.org/W2173248099","https://openalex.org/W2279759792","https://openalex.org/W2286163714","https://openalex.org/W2615790994","https://openalex.org/W2731083990","https://openalex.org/W2963864421","https://openalex.org/W3121933628","https://openalex.org/W3124028146","https://openalex.org/W4231546411","https://openalex.org/W4298857966","https://openalex.org/W4300755699"],"related_works":["https://openalex.org/W618881031","https://openalex.org/W4287554016","https://openalex.org/W3142142054","https://openalex.org/W3111454348","https://openalex.org/W2963256270","https://openalex.org/W2906847610","https://openalex.org/W2380305602","https://openalex.org/W2078547130","https://openalex.org/W1825854501","https://openalex.org/W1024407309"],"abstract_inverted_index":{"Allocation":[0],"of":[1,55,63,93,128,158,180,186,197,203,206,214,226,246],"liquid":[2],"capital":[3],"to":[4,26,46,81,106,136,182],"the":[5,19,28,34,37,48,56,64,67,74,83,86,98,110,126,137,178,184,201,224],"financial":[6],"instruments":[7,87],"in":[8,109,118,148,172,237],"a":[9,15,40,52,61,77,91,107,143,156,195,212,243,254],"portfolio":[10,57,94,102,138,173,189,196,215,231,247,255],"is":[11,44,155,170],"typically":[12],"done":[13,193],"using":[14,60],"two-step":[16],"process.":[17],"In":[18,36],"first":[20],"step,":[21,39],"predictive":[22],"techniques":[23],"are":[24,192,217,220],"used":[25,117],"determine":[27],"future":[29],"risk":[30,187,229],"and":[31,66,130,200,208,259],"rewards":[32],"for":[33,76,165,228],"instrument.":[35],"subsequent":[38],"quadratic":[41],"optimization":[42],"problem":[43,140,185],"solved":[45],"obtain":[47],"allocation":[49,84],"that":[50,88,141,162,222,241],"maximizes":[51],"relevant":[53],"measure":[54,92,213,245],"performance":[58,95,216,248],"computed":[59],"combination":[62],"risks":[65],"rewards.":[68],"Deep":[69,150],"Reinforcement":[70],"Learning":[71],"(DRL)":[72],"eliminates":[73],"need":[75],"two":[78],"step":[79],"process":[80],"find":[82],"across":[85],"will":[89],"optimize":[90],"obtained":[96],"from":[97,125],"market.":[99],"DRL":[100,122,160],"based":[101],"construction":[103,139],"autonomously":[104],"adjusts":[105],"change":[108],"environment":[111],"unlike":[112],"traditional":[113],"machine":[114],"learning":[115],"algorithms":[116],"prediction.":[119],"The":[120,233],"existing":[121],"methods":[123],"suffer":[124],"challenges":[127],"stability,":[129],"do":[131],"not":[132],"lend":[133],"themselves":[134],"well":[135],"has":[142],"continuous":[144,166],"action":[145,167],"space.":[146],"Proposed":[147],"2015,":[149],"Deterministic":[151],"Policy":[152],"Gradients":[153],"(DDPG)":[154],"type":[157],"actorcritic":[159],"algorithm":[161],"provides":[163],"support":[164],"space":[168],"which":[169],"encountered":[171],"construction.":[174,190,232],"This":[175],"paper":[176,239],"evaluates":[177],"use":[179,202],"DDPG":[181,227],"solve":[183],"aware":[188,230],"Simulations":[191],"on":[194],"twenty":[198],"stocks":[199],"both":[204],"Rate":[205],"Return":[207],"Sortino":[209,251],"ratio":[210,252],"as":[211,250],"evaluated.":[218],"Results":[219],"presented":[221,236],"demonstrate":[223],"effectiveness":[225],"simulation":[234],"results":[235],"this":[238],"show":[240],"having":[242],"risk-aware":[244],"such":[249],"give":[253],"with":[256],"superior":[257],"return":[258],"lower":[260],"variance.":[261]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W2912019150","counts_by_year":[{"year":2024,"cited_by_count":1},{"year":2023,"cited_by_count":1},{"year":2022,"cited_by_count":1},{"year":2021,"cited_by_count":2},{"year":2019,"cited_by_count":1}],"updated_date":"2025-01-02T10:28:11.747376","created_date":"2019-02-21"}