{"id":"https://openalex.org/W2090305834","doi":"https://doi.org/10.1109/spawc.2013.6612050","title":"High-resolution cyclic spectrum reconstruction from sub-Nyquist samples","display_name":"High-resolution cyclic spectrum reconstruction from sub-Nyquist samples","publication_year":2013,"publication_date":"2013-06-01","ids":{"openalex":"https://openalex.org/W2090305834","doi":"https://doi.org/10.1109/spawc.2013.6612050","mag":"2090305834"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/spawc.2013.6612050","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5028754482","display_name":"Seyed Alireza Razavi","orcid":"https://orcid.org/0000-0002-4391-2881"},"institutions":[{"id":"https://openalex.org/I150589677","display_name":"Tampere University of Applied Sciences","ror":"https://ror.org/00bwtjf83","country_code":"FI","type":"education","lineage":["https://openalex.org/I150589677"]}],"countries":["FI"],"is_corresponding":false,"raw_author_name":"Seyed Alireza Razavi","raw_affiliation_strings":["Dept. of Electron. & Commun. Eng., Tampere Univ. of Technol., Tampere, Finland"],"affiliations":[{"raw_affiliation_string":"Dept. of Electron. & Commun. Eng., Tampere Univ. of Technol., Tampere, Finland","institution_ids":["https://openalex.org/I150589677"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5054197935","display_name":"Mikko Valkama","orcid":"https://orcid.org/0000-0003-0361-0800"},"institutions":[{"id":"https://openalex.org/I150589677","display_name":"Tampere University of Applied Sciences","ror":"https://ror.org/00bwtjf83","country_code":"FI","type":"education","lineage":["https://openalex.org/I150589677"]}],"countries":["FI"],"is_corresponding":false,"raw_author_name":"Mikko Valkama","raw_affiliation_strings":["Dept. of Electron. & Commun. Eng., Tampere Univ. of Technol., Tampere, Finland"],"affiliations":[{"raw_affiliation_string":"Dept. of Electron. & Commun. Eng., Tampere Univ. of Technol., Tampere, Finland","institution_ids":["https://openalex.org/I150589677"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5008128583","display_name":"Danijela \u010cabri\u0107","orcid":"https://orcid.org/0000-0002-5967-2683"},"institutions":[{"id":"https://openalex.org/I161318765","display_name":"University of California, Los Angeles","ror":"https://ror.org/046rm7j60","country_code":"US","type":"education","lineage":["https://openalex.org/I161318765"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Danijela Cabric","raw_affiliation_strings":["Cognitive Reconfigurable Embedded Syst. Lab., Univ. of California, Los Angeles, Los Angeles, CA, USA"],"affiliations":[{"raw_affiliation_string":"Cognitive Reconfigurable Embedded Syst. Lab., Univ. of California, Los Angeles, Los Angeles, CA, USA","institution_ids":["https://openalex.org/I161318765"]}]}],"institution_assertions":[],"countries_distinct_count":2,"institutions_distinct_count":2,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":2.822,"has_fulltext":true,"fulltext_origin":"ngrams","cited_by_count":15,"citation_normalized_percentile":{"value":0.866394,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":88,"max":89},"biblio":{"volume":null,"issue":null,"first_page":"250","last_page":"254"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10500","display_name":"Sparse and Compressive Sensing Techniques","score":1.0,"subfield":{"id":"https://openalex.org/subfields/2206","display_name":"Computational Mechanics"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10500","display_name":"Sparse and Compressive Sensing Techniques","score":1.0,"subfield":{"id":"https://openalex.org/subfields/2206","display_name":"Computational Mechanics"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11447","display_name":"Blind Source Separation Techniques","score":0.9999,"subfield":{"id":"https://openalex.org/subfields/1711","display_name":"Signal Processing"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10688","display_name":"Image and Signal Denoising Methods","score":0.9991,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/signal-reconstruction","display_name":"Signal reconstruction","score":0.6287819},{"id":"https://openalex.org/keywords/nyquist\u2013shannon-sampling-theorem","display_name":"Nyquist\u2013Shannon sampling theorem","score":0.6179648},{"id":"https://openalex.org/keywords/nyquist-frequency","display_name":"Nyquist frequency","score":0.5841016},{"id":"https://openalex.org/keywords/signal","display_name":"SIGNAL (programming language)","score":0.5663483},{"id":"https://openalex.org/keywords/basis-pursuit","display_name":"Basis pursuit","score":0.42691204}],"concepts":[{"id":"https://openalex.org/C124851039","wikidata":"https://www.wikidata.org/wiki/Q2665459","display_name":"Compressed sensing","level":2,"score":0.7932289},{"id":"https://openalex.org/C156872377","wikidata":"https://www.wikidata.org/wiki/Q6786281","display_name":"Matching pursuit","level":3,"score":0.7653266},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.6444882},{"id":"https://openalex.org/C11413529","wikidata":"https://www.wikidata.org/wiki/Q8366","display_name":"Algorithm","level":1,"score":0.63423455},{"id":"https://openalex.org/C70958404","wikidata":"https://www.wikidata.org/wiki/Q7512728","display_name":"Signal reconstruction","level":4,"score":0.6287819},{"id":"https://openalex.org/C288623","wikidata":"https://www.wikidata.org/wiki/Q679800","display_name":"Nyquist\u2013Shannon sampling theorem","level":2,"score":0.6179648},{"id":"https://openalex.org/C149946192","wikidata":"https://www.wikidata.org/wiki/Q3235733","display_name":"Cognitive radio","level":3,"score":0.61302257},{"id":"https://openalex.org/C191178318","wikidata":"https://www.wikidata.org/wiki/Q2256906","display_name":"Thresholding","level":3,"score":0.6109035},{"id":"https://openalex.org/C98273374","wikidata":"https://www.wikidata.org/wiki/Q1501757","display_name":"Nyquist frequency","level":3,"score":0.5841016},{"id":"https://openalex.org/C2779843651","wikidata":"https://www.wikidata.org/wiki/Q7390335","display_name":"SIGNAL (programming language)","level":2,"score":0.5663483},{"id":"https://openalex.org/C140779682","wikidata":"https://www.wikidata.org/wiki/Q210868","display_name":"Sampling (signal processing)","level":3,"score":0.51262206},{"id":"https://openalex.org/C51823790","wikidata":"https://www.wikidata.org/wiki/Q504353","display_name":"Greedy algorithm","level":2,"score":0.50090647},{"id":"https://openalex.org/C99217422","wikidata":"https://www.wikidata.org/wiki/Q4867576","display_name":"Basis pursuit","level":4,"score":0.42691204},{"id":"https://openalex.org/C2776257435","wikidata":"https://www.wikidata.org/wiki/Q1576430","display_name":"Bandwidth (computing)","level":2,"score":0.27499318},{"id":"https://openalex.org/C104267543","wikidata":"https://www.wikidata.org/wiki/Q208163","display_name":"Signal processing","level":3,"score":0.26810676},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.2583008},{"id":"https://openalex.org/C76155785","wikidata":"https://www.wikidata.org/wiki/Q418","display_name":"Telecommunications","level":1,"score":0.17206329},{"id":"https://openalex.org/C31972630","wikidata":"https://www.wikidata.org/wiki/Q844240","display_name":"Computer vision","level":1,"score":0.16176069},{"id":"https://openalex.org/C115961682","wikidata":"https://www.wikidata.org/wiki/Q860623","display_name":"Image (mathematics)","level":2,"score":0.116805434},{"id":"https://openalex.org/C555944384","wikidata":"https://www.wikidata.org/wiki/Q249","display_name":"Wireless","level":2,"score":0.08181977},{"id":"https://openalex.org/C554190296","wikidata":"https://www.wikidata.org/wiki/Q47528","display_name":"Radar","level":2,"score":0.0},{"id":"https://openalex.org/C94915269","wikidata":"https://www.wikidata.org/wiki/Q1834857","display_name":"Detector","level":2,"score":0.0},{"id":"https://openalex.org/C199360897","wikidata":"https://www.wikidata.org/wiki/Q9143","display_name":"Programming language","level":1,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/spawc.2013.6612050","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":19,"referenced_works":["https://openalex.org/W1992316120","https://openalex.org/W2012864021","https://openalex.org/W2037701747","https://openalex.org/W2048101164","https://openalex.org/W2055224708","https://openalex.org/W2066761946","https://openalex.org/W2097336132","https://openalex.org/W2097466660","https://openalex.org/W2113749736","https://openalex.org/W2123023890","https://openalex.org/W2164233625","https://openalex.org/W2164452299","https://openalex.org/W2289917018","https://openalex.org/W2296616510","https://openalex.org/W2507026757","https://openalex.org/W2963322354","https://openalex.org/W4236249660","https://openalex.org/W4250955649","https://openalex.org/W610284107"],"related_works":["https://openalex.org/W2947469216","https://openalex.org/W2907652444","https://openalex.org/W2906069382","https://openalex.org/W2523302315","https://openalex.org/W2379468505","https://openalex.org/W2360977191","https://openalex.org/W2090305834","https://openalex.org/W2084865438","https://openalex.org/W2039122851","https://openalex.org/W156302293"],"abstract_inverted_index":{"In":[0],"this":[1],"paper,":[2],"the":[3,25,50,53,60,70,75,91,96],"problem":[4,26],"of":[5,7,52,59,98],"reconstruction":[6],"Spectral":[8],"Correlation":[9],"Function":[10],"(SCF)":[11],"from":[12],"sub-Nyquist":[13],"samples":[14],"is":[15,63],"studied.":[16],"We":[17],"will":[18],"first":[19],"propose":[20],"a":[21,99],"novel":[22],"formulation":[23],"for":[24,49],"and":[27,44,73],"then":[28],"employ":[29],"two":[30],"two-dimensional":[31],"greedy":[32],"like":[33],"sparse":[34,54],"signal":[35],"recovery":[36,51],"algorithms,":[37],"namely":[38],"Compressive":[39],"Sampling":[40],"Matching":[41],"Pursuit":[42],"(CoSaMP)":[43],"Iterative":[45],"Hard":[46],"Thresholding":[47],"(IHT),":[48],"SCF.":[55],"The":[56],"achievable":[57],"resolution":[58],"proposed":[61],"methods":[62,72,76],"shown":[64],"to":[65,80],"be":[66,78],"significantly":[67],"higher":[68],"than":[69],"existing":[71],"therefore":[74],"can":[77,93],"applied":[79],"signals":[81],"with":[82],"fine":[83],"frequency":[84],"components.":[85],"Comprehensive":[86],"simulation":[87],"results":[88],"shows":[89],"that":[90],"method":[92],"efficiently":[94],"reconstruct":[95],"SCF":[97],"signature-embedded":[100],"OFDM":[101],"signal,":[102],"which":[103],"has":[104],"applications":[105],"in":[106],"cognitive":[107],"radio":[108],"systems.":[109]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W2090305834","counts_by_year":[{"year":2020,"cited_by_count":1},{"year":2019,"cited_by_count":1},{"year":2018,"cited_by_count":1},{"year":2017,"cited_by_count":3},{"year":2016,"cited_by_count":4},{"year":2015,"cited_by_count":1},{"year":2014,"cited_by_count":4}],"updated_date":"2024-12-10T17:10:51.488652","created_date":"2016-06-24"}