{"id":"https://openalex.org/W2002144204","doi":"https://doi.org/10.1109/soli.2012.6273502","title":"An effective sequential pattern mining algorithm to support automatic process classification in contact center back office","display_name":"An effective sequential pattern mining algorithm to support automatic process classification in contact center back office","publication_year":2012,"publication_date":"2012-07-01","ids":{"openalex":"https://openalex.org/W2002144204","doi":"https://doi.org/10.1109/soli.2012.6273502","mag":"2002144204"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/soli.2012.6273502","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5062913166","display_name":"Tao Qin","orcid":"https://orcid.org/0000-0003-4874-2567"},"institutions":[{"id":"https://openalex.org/I1341412227","display_name":"IBM (United States)","ror":"https://ror.org/05hh8d621","country_code":"US","type":"company","lineage":["https://openalex.org/I1341412227"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Tao Qin","raw_affiliation_strings":["IBM Research - China Beijing, China 100193"],"affiliations":[{"raw_affiliation_string":"IBM Research - China Beijing, China 100193","institution_ids":["https://openalex.org/I1341412227"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5100811145","display_name":"Miao He","orcid":null},"institutions":[{"id":"https://openalex.org/I1341412227","display_name":"IBM (United States)","ror":"https://ror.org/05hh8d621","country_code":"US","type":"company","lineage":["https://openalex.org/I1341412227"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Miao He","raw_affiliation_strings":["IBM Research - China Beijing, China 100193"],"affiliations":[{"raw_affiliation_string":"IBM Research - China Beijing, China 100193","institution_ids":["https://openalex.org/I1341412227"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5113672506","display_name":"Changrui Ren","orcid":null},"institutions":[{"id":"https://openalex.org/I1341412227","display_name":"IBM (United States)","ror":"https://ror.org/05hh8d621","country_code":"US","type":"company","lineage":["https://openalex.org/I1341412227"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Changrui Ren","raw_affiliation_strings":["IBM Research - China Beijing, China 100193"],"affiliations":[{"raw_affiliation_string":"IBM Research - China Beijing, China 100193","institution_ids":["https://openalex.org/I1341412227"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5069874950","display_name":"Jin Dong","orcid":"https://orcid.org/0000-0003-1131-6396"},"institutions":[{"id":"https://openalex.org/I1341412227","display_name":"IBM (United States)","ror":"https://ror.org/05hh8d621","country_code":"US","type":"company","lineage":["https://openalex.org/I1341412227"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Jin Dong","raw_affiliation_strings":["IBM Research - China Beijing, China 100193"],"affiliations":[{"raw_affiliation_string":"IBM Research - China Beijing, China 100193","institution_ids":["https://openalex.org/I1341412227"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5102152310","display_name":"Sai Zeng","orcid":null},"institutions":[{"id":"https://openalex.org/I1341412227","display_name":"IBM (United States)","ror":"https://ror.org/05hh8d621","country_code":"US","type":"company","lineage":["https://openalex.org/I1341412227"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Sai Zeng","raw_affiliation_strings":["IBM T.J. Watson Research Center, Hawthorne, NY, 10523, USA"],"affiliations":[{"raw_affiliation_string":"IBM T.J. Watson Research Center, Hawthorne, NY, 10523, USA","institution_ids":["https://openalex.org/I1341412227"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":1,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":0.192,"has_fulltext":true,"fulltext_origin":"ngrams","cited_by_count":2,"citation_normalized_percentile":{"value":0.396109,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":72,"max":75},"biblio":{"volume":null,"issue":null,"first_page":"42","last_page":"47"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10538","display_name":"Data Mining Algorithms and Applications","score":0.9966,"subfield":{"id":"https://openalex.org/subfields/1710","display_name":"Information Systems"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10538","display_name":"Data Mining Algorithms and Applications","score":0.9966,"subfield":{"id":"https://openalex.org/subfields/1710","display_name":"Information Systems"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T12384","display_name":"Customer churn and segmentation","score":0.9882,"subfield":{"id":"https://openalex.org/subfields/1406","display_name":"Marketing"},"field":{"id":"https://openalex.org/fields/14","display_name":"Business, Management and Accounting"},"domain":{"id":"https://openalex.org/domains/2","display_name":"Social Sciences"}},{"id":"https://openalex.org/T10703","display_name":"Business Process Modeling and Analysis","score":0.9842,"subfield":{"id":"https://openalex.org/subfields/1404","display_name":"Management Information Systems"},"field":{"id":"https://openalex.org/fields/14","display_name":"Business, Management and Accounting"},"domain":{"id":"https://openalex.org/domains/2","display_name":"Social Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/center","display_name":"Center (category theory)","score":0.55783826}],"concepts":[{"id":"https://openalex.org/C105339364","wikidata":"https://www.wikidata.org/wiki/Q2297740","display_name":"Software deployment","level":2,"score":0.85229945},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.7632757},{"id":"https://openalex.org/C98045186","wikidata":"https://www.wikidata.org/wiki/Q205663","display_name":"Process (computing)","level":2,"score":0.72444534},{"id":"https://openalex.org/C2779463800","wikidata":"https://www.wikidata.org/wiki/Q5062222","display_name":"Center (category theory)","level":2,"score":0.55783826},{"id":"https://openalex.org/C48044578","wikidata":"https://www.wikidata.org/wiki/Q727490","display_name":"Scalability","level":2,"score":0.55348504},{"id":"https://openalex.org/C124101348","wikidata":"https://www.wikidata.org/wiki/Q172491","display_name":"Data mining","level":1,"score":0.37864798},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.3622262},{"id":"https://openalex.org/C77088390","wikidata":"https://www.wikidata.org/wiki/Q8513","display_name":"Database","level":1,"score":0.15972039},{"id":"https://openalex.org/C115903868","wikidata":"https://www.wikidata.org/wiki/Q80993","display_name":"Software engineering","level":1,"score":0.14715567},{"id":"https://openalex.org/C111919701","wikidata":"https://www.wikidata.org/wiki/Q9135","display_name":"Operating system","level":1,"score":0.08648005},{"id":"https://openalex.org/C185592680","wikidata":"https://www.wikidata.org/wiki/Q2329","display_name":"Chemistry","level":0,"score":0.0},{"id":"https://openalex.org/C8010536","wikidata":"https://www.wikidata.org/wiki/Q160398","display_name":"Crystallography","level":1,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/soli.2012.6273502","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[{"score":0.46,"display_name":"Industry, innovation and infrastructure","id":"https://metadata.un.org/sdg/9"}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":17,"referenced_works":["https://openalex.org/W1506285740","https://openalex.org/W1608194207","https://openalex.org/W1641039719","https://openalex.org/W1671870744","https://openalex.org/W1986531017","https://openalex.org/W2090704211","https://openalex.org/W2092960272","https://openalex.org/W2099937559","https://openalex.org/W2119338125","https://openalex.org/W2121722108","https://openalex.org/W2148761941","https://openalex.org/W2158454296","https://openalex.org/W2166605588","https://openalex.org/W2166986091","https://openalex.org/W2168196587","https://openalex.org/W3142549532","https://openalex.org/W4247587202"],"related_works":["https://openalex.org/W96612179","https://openalex.org/W632915154","https://openalex.org/W4378874356","https://openalex.org/W4256492088","https://openalex.org/W4229499248","https://openalex.org/W3151146928","https://openalex.org/W2987774938","https://openalex.org/W2770234245","https://openalex.org/W2566006169","https://openalex.org/W2055733372"],"abstract_inverted_index":{"Contact":[0],"center":[1,115],"and":[2,20,24,28,35,43,68,104,111],"its":[3],"back":[4,17,46,116],"office":[5,18,47],"play":[6],"a":[7],"pivotal":[8],"role":[9],"on":[10,80,107],"delivering":[11],"excellent":[12],"services":[13],"to":[14,31,52,65,84,94],"customer.":[15],"However,":[16],"process":[19,41,86,109],"operations":[21],"become":[22],"more":[23,25],"complex,":[26],"variable":[27],"costly":[29],"due":[30,64],"frequent":[32],"environment":[33],"varying":[34],"the":[36,66,96],"trend":[37],"of":[38,90,98],"staff-intensive.":[39],"Automatic":[40],"classification":[42,110],"delimitation":[44,112],"in":[45,113],"is":[48],"an":[49,77],"effective":[50,78],"way":[51],"help":[53],"resolve":[54],"these":[55],"challenges,":[56],"but":[57],"it":[58],"suffers":[59],"very":[60],"high":[61,102],"deployment":[62,100],"cost":[63,106],"complex":[67],"burdensome":[69],"configuration":[70,92],"works.":[71],"In":[72],"this":[73],"paper,":[74],"we":[75],"propose":[76],"algorithm":[79],"sequential":[81],"pattern":[82],"mining":[83],"generate":[85],"patterns":[87],"automatically,":[88],"instead":[89],"manual":[91],"works,":[93],"achieve":[95],"goals":[97],"scalable":[99],"with":[101],"efficiency":[103],"low":[105],"automatic":[108],"contact":[114],"office.":[117]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W2002144204","counts_by_year":[{"year":2017,"cited_by_count":1},{"year":2012,"cited_by_count":1}],"updated_date":"2025-01-20T22:32:20.982677","created_date":"2016-06-24"}