{"id":"https://openalex.org/W4391331264","doi":"https://doi.org/10.1109/smc53992.2023.10394096","title":"Intelligent Product Quality Prediction for Highly Customized Complex Production Adopting Ensemble Learning Model","display_name":"Intelligent Product Quality Prediction for Highly Customized Complex Production Adopting Ensemble Learning Model","publication_year":2023,"publication_date":"2023-10-01","ids":{"openalex":"https://openalex.org/W4391331264","doi":"https://doi.org/10.1109/smc53992.2023.10394096"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/smc53992.2023.10394096","pdf_url":null,"source":{"id":"https://openalex.org/S4363607746","display_name":"2022 IEEE International Conference on Systems, Man, and Cybernetics (SMC)","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5015633372","display_name":"Amy J.C. Trappey","orcid":"https://orcid.org/0000-0001-7651-7012"},"institutions":[{"id":"https://openalex.org/I25846049","display_name":"National Tsing Hua University","ror":"https://ror.org/00zdnkx70","country_code":"TW","type":"education","lineage":["https://openalex.org/I25846049"]}],"countries":["TW"],"is_corresponding":false,"raw_author_name":"Amy J. C. Trappey","raw_affiliation_strings":["Department of Industrial Engineering and Engineering Management, National Tsing Hua University, Hsinchu, Taiwan"],"affiliations":[{"raw_affiliation_string":"Department of Industrial Engineering and Engineering Management, National Tsing Hua University, Hsinchu, Taiwan","institution_ids":["https://openalex.org/I25846049"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5003288245","display_name":"Chun-Hua Chien","orcid":"https://orcid.org/0000-0002-8381-4936"},"institutions":[{"id":"https://openalex.org/I25846049","display_name":"National Tsing Hua University","ror":"https://ror.org/00zdnkx70","country_code":"TW","type":"education","lineage":["https://openalex.org/I25846049"]}],"countries":["TW"],"is_corresponding":false,"raw_author_name":"Chun-Hua Chien","raw_affiliation_strings":["Department of Industrial Engineering and Engineering Management, National Tsing Hua University, Hsinchu, Taiwan"],"affiliations":[{"raw_affiliation_string":"Department of Industrial Engineering and Engineering Management, National Tsing Hua University, Hsinchu, Taiwan","institution_ids":["https://openalex.org/I25846049"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":1,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":0.0,"has_fulltext":false,"cited_by_count":0,"citation_normalized_percentile":{"value":0.0,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":0,"max":67},"biblio":{"volume":"45","issue":null,"first_page":"4575","last_page":"4580"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10763","display_name":"Digital Transformation in Industry","score":0.9838,"subfield":{"id":"https://openalex.org/subfields/2209","display_name":"Industrial and Manufacturing Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10763","display_name":"Digital Transformation in Industry","score":0.9838,"subfield":{"id":"https://openalex.org/subfields/2209","display_name":"Industrial and Manufacturing Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T12111","display_name":"Industrial Vision Systems and Defect Detection","score":0.9788,"subfield":{"id":"https://openalex.org/subfields/2209","display_name":"Industrial and Manufacturing Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11159","display_name":"Manufacturing Process and Optimization","score":0.9495,"subfield":{"id":"https://openalex.org/subfields/2209","display_name":"Industrial and Manufacturing Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/ensemble-learning","display_name":"Ensemble Learning","score":0.4295322}],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.7304082},{"id":"https://openalex.org/C2779530757","wikidata":"https://www.wikidata.org/wiki/Q1207505","display_name":"Quality (philosophy)","level":2,"score":0.6313508},{"id":"https://openalex.org/C2778348673","wikidata":"https://www.wikidata.org/wiki/Q739302","display_name":"Production (economics)","level":2,"score":0.62473655},{"id":"https://openalex.org/C90673727","wikidata":"https://www.wikidata.org/wiki/Q901718","display_name":"Product (mathematics)","level":2,"score":0.57598543},{"id":"https://openalex.org/C45942800","wikidata":"https://www.wikidata.org/wiki/Q245652","display_name":"Ensemble learning","level":2,"score":0.4295322},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.40389034},{"id":"https://openalex.org/C138885662","wikidata":"https://www.wikidata.org/wiki/Q5891","display_name":"Philosophy","level":0,"score":0.0},{"id":"https://openalex.org/C2524010","wikidata":"https://www.wikidata.org/wiki/Q8087","display_name":"Geometry","level":1,"score":0.0},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.0},{"id":"https://openalex.org/C111472728","wikidata":"https://www.wikidata.org/wiki/Q9471","display_name":"Epistemology","level":1,"score":0.0},{"id":"https://openalex.org/C162324750","wikidata":"https://www.wikidata.org/wiki/Q8134","display_name":"Economics","level":0,"score":0.0},{"id":"https://openalex.org/C139719470","wikidata":"https://www.wikidata.org/wiki/Q39680","display_name":"Macroeconomics","level":1,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/smc53992.2023.10394096","pdf_url":null,"source":{"id":"https://openalex.org/S4363607746","display_name":"2022 IEEE International Conference on Systems, Man, and Cybernetics (SMC)","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[{"id":"https://metadata.un.org/sdg/9","display_name":"Industry, innovation and infrastructure","score":0.51}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":29,"referenced_works":["https://openalex.org/W1678356000","https://openalex.org/W1968831178","https://openalex.org/W2112076978","https://openalex.org/W2123504579","https://openalex.org/W2138697398","https://openalex.org/W2265358305","https://openalex.org/W2604927196","https://openalex.org/W2788276261","https://openalex.org/W2809953005","https://openalex.org/W2901427522","https://openalex.org/W2901661213","https://openalex.org/W2911964244","https://openalex.org/W2970551263","https://openalex.org/W2997638503","https://openalex.org/W3034703993","https://openalex.org/W3049468025","https://openalex.org/W3094204580","https://openalex.org/W3137278554","https://openalex.org/W3137867542","https://openalex.org/W3139844155","https://openalex.org/W3162912304","https://openalex.org/W3205825199","https://openalex.org/W4210309581","https://openalex.org/W4212883601","https://openalex.org/W4245160364","https://openalex.org/W4306311577","https://openalex.org/W4309047178","https://openalex.org/W4319225074","https://openalex.org/W4400134761"],"related_works":["https://openalex.org/W4240703725","https://openalex.org/W381496026","https://openalex.org/W3034338377","https://openalex.org/W2570544837","https://openalex.org/W2538183362","https://openalex.org/W2390631662","https://openalex.org/W2373792516","https://openalex.org/W2364654346","https://openalex.org/W2084978036","https://openalex.org/W1807784185"],"abstract_inverted_index":{"End-product":[0],"quality":[1,38,184],"prediction":[2],"is":[3],"crucial":[4],"in":[5,55,87,142,152],"smart":[6],"manufacturing,":[7],"where":[8],"reliable":[9],"evaluation":[10],"and":[11,31,63,73,113,124,139,160,188],"parameter":[12],"optimization":[13],"are":[14],"essential":[15],"for":[16,111],"ensuring":[17],"high-quality":[18],"outputs.":[19],"This":[20,169],"study":[21],"presents":[22],"a":[23,58],"novel":[24],"approach":[25,170],"that":[26,132],"combines":[27,120],"adaptive":[28,69,121],"machine":[29,126],"learning":[30,127],"nonlinear":[32],"regression":[33],"to":[34,174],"accurately":[35,181],"predict":[36],"the":[37,83,96,102,133,172,183],"of":[39,90,154,185],"highly":[40,189],"customized":[41,190],"end":[42],"products":[43],"using":[44,75],"limited":[45],"supply-chain":[46],"data":[47],"through":[48],"digital":[49],"transformation.":[50],"The":[51,68,93,115,146],"research":[52],"was":[53,71],"conducted":[54],"collaboration":[56],"with":[57],"major":[59],"power":[60,103],"transformer":[61,144],"manufacturer":[62],"its":[64],"supply":[65,84],"chain":[66],"partners.":[67],"model":[70,94,135,147],"trained":[72],"validated":[74],"real":[76],"datasets":[77],"from":[78,101],"key":[79,105],"components":[80],"provided":[81],"by":[82,180],"chain,":[85],"resulting":[86],"accurate":[88],"predictions":[89],"end-product":[91],"quality.":[92,145],"incorporates":[95],"core":[97],"loss":[98],"parameter,":[99],"obtained":[100],"transformer's":[104],"component,":[106],"as":[107],"an":[108],"input":[109],"dataset":[110],"training":[112],"testing.":[114],"proposed":[116],"approach,":[117],"called":[118],"AdaBoost-Regression,":[119],"boosting":[122],"(AdaBoost)":[123],"Regression":[125,140],"techniques.":[128],"Experimental":[129],"results":[130],"demonstrate":[131],"AdaBoost-Regression":[134],"outperforms":[136],"simple":[137],"AdaBoost":[138],"models":[141],"predicting":[143,182],"also":[148],"exhibits":[149],"superior":[150],"performance":[151],"terms":[153],"mean":[155,162],"absolute":[156],"percentage":[157],"error":[158,164],"(MAPE)":[159],"root":[161],"square":[163],"(RMSE)":[165],"during":[166],"real-data":[167],"verification.":[168],"has":[171],"potential":[173],"significantly":[175],"reduce":[176],"overall":[177],"production":[178],"costs":[179],"complex,":[186],"expensive,":[187],"industrial":[191,199],"products.":[192],"It":[193],"can":[194],"be":[195],"applied":[196],"across":[197],"various":[198],"sectors.":[200]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4391331264","counts_by_year":[],"updated_date":"2024-12-31T07:08:45.782363","created_date":"2024-01-30"}