{"id":"https://openalex.org/W4206548446","doi":"https://doi.org/10.1109/smc52423.2021.9658929","title":"GA-MLP-based Inverse Modeling Technique for Prediction of Process Parameters and Cost Optimization","display_name":"GA-MLP-based Inverse Modeling Technique for Prediction of Process Parameters and Cost Optimization","publication_year":2021,"publication_date":"2021-10-17","ids":{"openalex":"https://openalex.org/W4206548446","doi":"https://doi.org/10.1109/smc52423.2021.9658929"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/smc52423.2021.9658929","pdf_url":null,"source":{"id":"https://openalex.org/S4363607746","display_name":"2022 IEEE International Conference on Systems, Man, and Cybernetics (SMC)","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5014300745","display_name":"Ravindra V. Savangouder","orcid":"https://orcid.org/0000-0002-9554-7855"},"institutions":[{"id":"https://openalex.org/I57093077","display_name":"Swinburne University of Technology","ror":"https://ror.org/031rekg67","country_code":"AU","type":"education","lineage":["https://openalex.org/I57093077"]}],"countries":["AU"],"is_corresponding":false,"raw_author_name":"Ravindra V. Savangouder","raw_affiliation_strings":["Swinburne University of Technology, Melbourne, VIC, Australia"],"affiliations":[{"raw_affiliation_string":"Swinburne University of Technology, Melbourne, VIC, Australia","institution_ids":["https://openalex.org/I57093077"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5049913930","display_name":"Jagdish C. Patra","orcid":"https://orcid.org/0000-0002-6257-0469"},"institutions":[{"id":"https://openalex.org/I57093077","display_name":"Swinburne University of Technology","ror":"https://ror.org/031rekg67","country_code":"AU","type":"education","lineage":["https://openalex.org/I57093077"]}],"countries":["AU"],"is_corresponding":false,"raw_author_name":"Jagdish C. Patra","raw_affiliation_strings":["Swinburne University of Technology, Melbourne, VIC, Australia"],"affiliations":[{"raw_affiliation_string":"Swinburne University of Technology, Melbourne, VIC, Australia","institution_ids":["https://openalex.org/I57093077"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":1,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":0.0,"has_fulltext":false,"cited_by_count":0,"citation_normalized_percentile":{"value":0.0,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":0,"max":57},"biblio":{"volume":null,"issue":null,"first_page":"510","last_page":"515"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10188","display_name":"Advanced machining processes and optimization","score":0.9989,"subfield":{"id":"https://openalex.org/subfields/2210","display_name":"Mechanical Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10188","display_name":"Advanced machining processes and optimization","score":0.9989,"subfield":{"id":"https://openalex.org/subfields/2210","display_name":"Mechanical Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11201","display_name":"Metallurgy and Material Forming","score":0.9974,"subfield":{"id":"https://openalex.org/subfields/2211","display_name":"Mechanics of Materials"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11451","display_name":"Advanced Machining and Optimization Techniques","score":0.9967,"subfield":{"id":"https://openalex.org/subfields/2208","display_name":"Electrical and Electronic Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/austempering","display_name":"Austempering","score":0.6510867},{"id":"https://openalex.org/keywords/multilayer-perceptron","display_name":"Multilayer perceptron","score":0.5267757}],"concepts":[{"id":"https://openalex.org/C128262354","wikidata":"https://www.wikidata.org/wiki/Q3319824","display_name":"Austempering","level":5,"score":0.6510867},{"id":"https://openalex.org/C98045186","wikidata":"https://www.wikidata.org/wiki/Q205663","display_name":"Process (computing)","level":2,"score":0.62158847},{"id":"https://openalex.org/C8880873","wikidata":"https://www.wikidata.org/wiki/Q187787","display_name":"Genetic algorithm","level":2,"score":0.6036624},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.58915323},{"id":"https://openalex.org/C179717631","wikidata":"https://www.wikidata.org/wiki/Q2991667","display_name":"Multilayer perceptron","level":3,"score":0.5267757},{"id":"https://openalex.org/C50644808","wikidata":"https://www.wikidata.org/wiki/Q192776","display_name":"Artificial neural network","level":2,"score":0.51964676},{"id":"https://openalex.org/C207467116","wikidata":"https://www.wikidata.org/wiki/Q4385666","display_name":"Inverse","level":2,"score":0.46202594},{"id":"https://openalex.org/C138331895","wikidata":"https://www.wikidata.org/wiki/Q11650","display_name":"Electronics","level":2,"score":0.4518284},{"id":"https://openalex.org/C126255220","wikidata":"https://www.wikidata.org/wiki/Q141495","display_name":"Mathematical optimization","level":1,"score":0.35249364},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.2557174},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.24262372},{"id":"https://openalex.org/C127413603","wikidata":"https://www.wikidata.org/wiki/Q11023","display_name":"Engineering","level":0,"score":0.22445461},{"id":"https://openalex.org/C192562407","wikidata":"https://www.wikidata.org/wiki/Q228736","display_name":"Materials science","level":0,"score":0.16385216},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.15678072},{"id":"https://openalex.org/C96288455","wikidata":"https://www.wikidata.org/wiki/Q487286","display_name":"Austenite","level":3,"score":0.0},{"id":"https://openalex.org/C44125496","wikidata":"https://www.wikidata.org/wiki/Q575611","display_name":"Bainite","level":4,"score":0.0},{"id":"https://openalex.org/C87976508","wikidata":"https://www.wikidata.org/wiki/Q1498213","display_name":"Microstructure","level":2,"score":0.0},{"id":"https://openalex.org/C2524010","wikidata":"https://www.wikidata.org/wiki/Q8087","display_name":"Geometry","level":1,"score":0.0},{"id":"https://openalex.org/C119599485","wikidata":"https://www.wikidata.org/wiki/Q43035","display_name":"Electrical engineering","level":1,"score":0.0},{"id":"https://openalex.org/C191897082","wikidata":"https://www.wikidata.org/wiki/Q11467","display_name":"Metallurgy","level":1,"score":0.0},{"id":"https://openalex.org/C111919701","wikidata":"https://www.wikidata.org/wiki/Q9135","display_name":"Operating system","level":1,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/smc52423.2021.9658929","pdf_url":null,"source":{"id":"https://openalex.org/S4363607746","display_name":"2022 IEEE International Conference on Systems, Man, and Cybernetics (SMC)","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[{"display_name":"Industry, innovation and infrastructure","id":"https://metadata.un.org/sdg/9","score":0.42}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":19,"referenced_works":["https://openalex.org/W1966580082","https://openalex.org/W2029608738","https://openalex.org/W2038572147","https://openalex.org/W2074648417","https://openalex.org/W2124086209","https://openalex.org/W2144584868","https://openalex.org/W2158962111","https://openalex.org/W2241228425","https://openalex.org/W2318999448","https://openalex.org/W2517227305","https://openalex.org/W2614235045","https://openalex.org/W2748874740","https://openalex.org/W2762334305","https://openalex.org/W2771783069","https://openalex.org/W2774558034","https://openalex.org/W2905563648","https://openalex.org/W2992896010","https://openalex.org/W3091459767","https://openalex.org/W3114839315"],"related_works":["https://openalex.org/W3037439103","https://openalex.org/W2919891455","https://openalex.org/W2393266050","https://openalex.org/W2389910334","https://openalex.org/W2366482351","https://openalex.org/W2314315125","https://openalex.org/W2140424691","https://openalex.org/W1982480350","https://openalex.org/W1650144273","https://openalex.org/W1512544798"],"abstract_inverted_index":{"With":[0,176],"the":[1,9,18,26,35,54,65,69,75,86,104,119,141,158,164,172,184,200,207,232],"advancement":[2],"in":[3,13,41,246],"electrical,":[4],"electronics":[5],"and":[6,30,51,67,73,84,97,149,169,171,242],"telecommunication":[7],"technologies,":[8],"use":[10,70],"of":[11,21,71,77,122,190,197,219,225,234,239,249],"sensors":[12,40,59],"manufacturing":[14,78,87,120,247],"facilities":[15],"has":[16,25],"enabled":[17],"industrial":[19],"internet":[20],"things":[22],"(IIoT).":[23],"IIoT":[24,235],"potential":[27,233],"to":[28,63,90,127,156,230,243],"optimize":[29,68],"save":[31],"cost":[32,76,248],"by":[33,38,99,139,206,236],"understanding":[34],"data":[36,55],"gathered":[37],"various":[39],"these":[42,58,82],"facilities.":[43],"By":[44],"embracing":[45],"techniques,":[46],"such":[47],"as,":[48],"machine":[49],"learning":[50],"artificial":[52],"intelligence,":[53],"collated":[56],"through":[57],"can":[60,109,187,213],"be":[61,91,110,214],"utilized":[62],"improve":[64],"efficiency":[66],"resources":[72],"reduce":[74],"processes.":[79],"To":[80],"achieve":[81,244],"efficiencies":[83],"optimization,":[85],"process":[88,107,121,143,161],"needs":[89],"first":[92],"modeled":[93],"using":[94,100,144],"machine-learning":[95],"techniques":[96],"then":[98],"evolutionary":[101],"computation":[102],"algorithms,":[103],"optimal":[105,159,201],"input":[106],"parameters":[108],"determined.":[111],"In":[112],"this":[113,226],"paper,":[114],"we":[115,180],"have":[116,181],"comprehensively":[117],"analyzed":[118],"austempered":[123],"ductile":[124],"iron":[125],"(ADI)":[126],"obtain":[128],"desired":[129,253],"property":[130],"(e.g.,":[131],"Vickers":[132],"hardness":[133],"number,":[134],"VHN).":[135],"This":[136],"is":[137],"achieved":[138],"modeling":[140],"ADI":[142,160,191,220,250],"a":[145,150,193],"genetic":[146],"algorithm":[147],"(GA)":[148],"multilayer":[151],"perceptron":[152],"(MLP)-based":[153],"inverse":[154,210],"model":[155,186,227],"predict":[157,188],"parameters,":[162],"i.e.,":[163],"austempering":[165],"heat":[166],"treatment":[167],"temperature":[168],"time,":[170],"alloying":[173,202,240],"element":[174,203],"proportions.":[175],"extensive":[177],"simulation":[178],"results,":[179],"shown":[182],"that":[183],"MLP":[185],"VHN":[189],"with":[192,251],"mean":[194],"square":[195],"error":[196],"0.61.":[198],"Using":[199],"proportions":[204],"predicted":[205],"proposed":[208],"GA-MLP-based":[209],"model,":[211],"US$50-$90":[212],"saved":[215],"for":[216],"every":[217],"tonne":[218],"produced":[221],"(i.e.,":[222],"15-25%).":[223],"Use":[224],"will":[228],"help":[229],"realize":[231],"reducing":[237],"wastage":[238],"elements":[241],"reduction":[245],"specific":[252],"property.":[254]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4206548446","counts_by_year":[],"updated_date":"2024-12-07T14:53:46.868463","created_date":"2022-01-25"}