{"id":"https://openalex.org/W4205247182","doi":"https://doi.org/10.1109/smc52423.2021.9658749","title":"Less-Individual Motion Features for Near-Future Prediction by using Domain Confusion","display_name":"Less-Individual Motion Features for Near-Future Prediction by using Domain Confusion","publication_year":2021,"publication_date":"2021-10-17","ids":{"openalex":"https://openalex.org/W4205247182","doi":"https://doi.org/10.1109/smc52423.2021.9658749"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/smc52423.2021.9658749","pdf_url":null,"source":{"id":"https://openalex.org/S4363607746","display_name":"2022 IEEE International Conference on Systems, Man, and Cybernetics (SMC)","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5081477761","display_name":"Yuuki Horiuchi","orcid":null},"institutions":[{"id":"https://openalex.org/I74801974","display_name":"The University of Tokyo","ror":"https://ror.org/057zh3y96","country_code":"JP","type":"education","lineage":["https://openalex.org/I74801974"]}],"countries":["JP"],"is_corresponding":false,"raw_author_name":"Yuuki Horiuchi","raw_affiliation_strings":["Graduate School of Information Science and Technology, University of Tokyo, Tokyo, Japan"],"affiliations":[{"raw_affiliation_string":"Graduate School of Information Science and Technology, University of Tokyo, Tokyo, Japan","institution_ids":["https://openalex.org/I74801974"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5067545363","display_name":"Yasutoshi Makino","orcid":"https://orcid.org/0000-0002-9362-4407"},"institutions":[{"id":"https://openalex.org/I14396692","display_name":"Tokyo University of Information Sciences","ror":"https://ror.org/044bdx604","country_code":"JP","type":"education","lineage":["https://openalex.org/I14396692"]},{"id":"https://openalex.org/I74801974","display_name":"The University of Tokyo","ror":"https://ror.org/057zh3y96","country_code":"JP","type":"education","lineage":["https://openalex.org/I74801974"]}],"countries":["JP"],"is_corresponding":false,"raw_author_name":"Yasutoshi Makino","raw_affiliation_strings":["Graduate School of Information Science and Technology, University of Tokyo, Chiba, Japan"],"affiliations":[{"raw_affiliation_string":"Graduate School of Information Science and Technology, University of Tokyo, Chiba, Japan","institution_ids":["https://openalex.org/I14396692","https://openalex.org/I74801974"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":2,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":0.102,"has_fulltext":false,"cited_by_count":1,"citation_normalized_percentile":{"value":0.305691,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":57,"max":67},"biblio":{"volume":null,"issue":null,"first_page":"2095","last_page":"2101"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T11512","display_name":"Anomaly Detection Techniques and Applications","score":0.9998,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T11512","display_name":"Anomaly Detection Techniques and Applications","score":0.9998,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10812","display_name":"Human Pose and Action Recognition","score":0.9997,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T12205","display_name":"Time Series Analysis and Forecasting","score":0.9976,"subfield":{"id":"https://openalex.org/subfields/1711","display_name":"Signal Processing"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/confusion","display_name":"Confusion","score":0.59395844},{"id":"https://openalex.org/keywords/transfer-of-learning","display_name":"Transfer of learning","score":0.4762937}],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.7436035},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.68796664},{"id":"https://openalex.org/C104114177","wikidata":"https://www.wikidata.org/wiki/Q79782","display_name":"Motion (physics)","level":2,"score":0.66466933},{"id":"https://openalex.org/C2781140086","wikidata":"https://www.wikidata.org/wiki/Q557945","display_name":"Confusion","level":2,"score":0.59395844},{"id":"https://openalex.org/C52622490","wikidata":"https://www.wikidata.org/wiki/Q1026626","display_name":"Feature extraction","level":2,"score":0.533439},{"id":"https://openalex.org/C39890363","wikidata":"https://www.wikidata.org/wiki/Q36108","display_name":"Generative grammar","level":2,"score":0.52769756},{"id":"https://openalex.org/C50644808","wikidata":"https://www.wikidata.org/wiki/Q192776","display_name":"Artificial neural network","level":2,"score":0.5189683},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.49438},{"id":"https://openalex.org/C37736160","wikidata":"https://www.wikidata.org/wiki/Q1801315","display_name":"Adversarial system","level":2,"score":0.48333666},{"id":"https://openalex.org/C150899416","wikidata":"https://www.wikidata.org/wiki/Q1820378","display_name":"Transfer of learning","level":2,"score":0.4762937},{"id":"https://openalex.org/C36503486","wikidata":"https://www.wikidata.org/wiki/Q11235244","display_name":"Domain (mathematical analysis)","level":2,"score":0.44301865},{"id":"https://openalex.org/C132525143","wikidata":"https://www.wikidata.org/wiki/Q141488","display_name":"Graph","level":2,"score":0.4278925},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.4132177},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.15479368},{"id":"https://openalex.org/C15744967","wikidata":"https://www.wikidata.org/wiki/Q9418","display_name":"Psychology","level":0,"score":0.0},{"id":"https://openalex.org/C134306372","wikidata":"https://www.wikidata.org/wiki/Q7754","display_name":"Mathematical analysis","level":1,"score":0.0},{"id":"https://openalex.org/C80444323","wikidata":"https://www.wikidata.org/wiki/Q2878974","display_name":"Theoretical computer science","level":1,"score":0.0},{"id":"https://openalex.org/C11171543","wikidata":"https://www.wikidata.org/wiki/Q41630","display_name":"Psychoanalysis","level":1,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/smc52423.2021.9658749","pdf_url":null,"source":{"id":"https://openalex.org/S4363607746","display_name":"2022 IEEE International Conference on Systems, Man, and Cybernetics (SMC)","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":22,"referenced_works":["https://openalex.org/W1614298861","https://openalex.org/W1731081199","https://openalex.org/W1735317348","https://openalex.org/W2028301086","https://openalex.org/W2101032778","https://openalex.org/W2183314856","https://openalex.org/W2295767420","https://openalex.org/W2493916176","https://openalex.org/W2519091744","https://openalex.org/W2604314403","https://openalex.org/W2762273490","https://openalex.org/W2903957468","https://openalex.org/W2963076818","https://openalex.org/W2963165299","https://openalex.org/W2963233633","https://openalex.org/W2963548793","https://openalex.org/W2963601856","https://openalex.org/W2964203186","https://openalex.org/W2983925976","https://openalex.org/W2984529706","https://openalex.org/W3011667710","https://openalex.org/W3018757597"],"related_works":["https://openalex.org/W4310988119","https://openalex.org/W4297672492","https://openalex.org/W4288019534","https://openalex.org/W4285226279","https://openalex.org/W4246396837","https://openalex.org/W3191453585","https://openalex.org/W3126451824","https://openalex.org/W2502115930","https://openalex.org/W2482350142","https://openalex.org/W1561927205"],"abstract_inverted_index":{"This":[0,91],"paper":[1],"proposes":[2,94],"a":[3,50,95,120],"method":[4,96,133],"of":[5,84,119,169],"extracting":[6,98],"features":[7,23,62,99],"with":[8,63,70,100,130],"little":[9,64,101],"individual":[10,58,71,102,139],"difference":[11,103],"from":[12],"motion":[13,61,157],"time-series":[14],"data":[15],"using":[16,27,104],"domain":[17],"confusion.":[18],"Several":[19],"studies":[20,52],"have":[21,33,53],"extracted":[22],"for":[24,97,149,173],"classification":[25],"tasks":[26],"transfer":[28],"learning.":[29],"In":[30],"addition,":[31],"researchers":[32],"applied":[34,76,113],"feature":[35],"extraction":[36],"to":[37,45,56,77,115,152,160],"style":[38,78],"conversion,":[39,79],"such":[40],"as":[41],"generative":[42],"adversarial":[43],"networks":[44],"transform":[46],"poses;":[47],"however,":[48],"only":[49],"few":[51],"implemented":[54],"learning":[55],"reduce":[57],"differences.":[59,140],"If":[60],"individuality":[65],"are":[66],"obtained,":[67],"reproducing":[68],"motions":[69],"characteristics":[72],"becomes":[73],"possible.":[74],"When":[75],"it":[80,114],"enables":[81],"person-to-person":[82],"mapping":[83],"movements":[85],"and":[86,126,172],"detecting":[87],"anomalies,":[88],"among":[89],"others.":[90],"study":[92],"first":[93],"graph":[105],"structure":[106],"layers":[107],"in":[108,122,146,166],"neural":[109],"networks;":[110],"subsequently,":[111],"we":[112],"predict":[116],"the":[117,123,131,174],"movement":[118],"person":[121],"near":[124],"future":[125],"compared":[127],"its":[128],"accuracy":[129,142,164,177],"conventional":[132],"that":[134],"does":[135],"not":[136],"explicitly":[137],"consider":[138],"The":[141],"improvement":[143],"was":[144],"confirmed":[145],"many":[147],"cases":[148],"prediction":[150,158],"up":[151,159],"0.4":[153],"s":[154,162],"ahead.":[155],"For":[156],"0.32":[161],"ahead,":[163],"improved":[165,178],"14":[167],"out":[168],"15":[170],"motions,":[171],"average":[175],"score,":[176],"by":[179],"approximately":[180],"38%.":[181]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4205247182","counts_by_year":[{"year":2023,"cited_by_count":1}],"updated_date":"2024-12-07T14:48:26.752286","created_date":"2022-01-25"}