{"id":"https://openalex.org/W2775197080","doi":"https://doi.org/10.1109/smc.2017.8122795","title":"Multi-scale texture recognition systems with reduced cost: A case study on forest species","display_name":"Multi-scale texture recognition systems with reduced cost: A case study on forest species","publication_year":2017,"publication_date":"2017-10-01","ids":{"openalex":"https://openalex.org/W2775197080","doi":"https://doi.org/10.1109/smc.2017.8122795","mag":"2775197080"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/smc.2017.8122795","pdf_url":null,"source":{"id":"https://openalex.org/S4363607746","display_name":"2022 IEEE International Conference on Systems, Man, and Cybernetics (SMC)","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5041613681","display_name":"Paulo Cavalin","orcid":null},"institutions":[{"id":"https://openalex.org/I4210113516","display_name":"IBM Research - Brazil","ror":"https://ror.org/01fxqdx25","country_code":"BR","type":"facility","lineage":["https://openalex.org/I1341412227","https://openalex.org/I4210113516","https://openalex.org/I4210114115"]}],"countries":["BR"],"is_corresponding":false,"raw_author_name":"Paulo R. Cavalin","raw_affiliation_strings":["IBM Research, Rio de Janeiro, Brazil"],"affiliations":[{"raw_affiliation_string":"IBM Research, Rio de Janeiro, Brazil","institution_ids":["https://openalex.org/I4210113516"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5065203941","display_name":"Marcelo N. Kapp","orcid":"https://orcid.org/0000-0002-0743-8641"},"institutions":[{"id":"https://openalex.org/I165972669","display_name":"Universidade Federal da Integra\u00e7\u00e3o Latino-Americana","ror":"https://ror.org/02gp35s66","country_code":"BR","type":"education","lineage":["https://openalex.org/I165972669"]}],"countries":["BR"],"is_corresponding":false,"raw_author_name":"Marcelo N. Kapp","raw_affiliation_strings":["Universidade Federal da Integra\u00e7o Latino Americana-Unila, Foz do Igua\u00e7\u00fa, PR, Brazil"],"affiliations":[{"raw_affiliation_string":"Universidade Federal da Integra\u00e7o Latino Americana-Unila, Foz do Igua\u00e7\u00fa, PR, Brazil","institution_ids":["https://openalex.org/I165972669"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5038884704","display_name":"Luiz S. Oliveira","orcid":"https://orcid.org/0000-0002-0595-5370"},"institutions":[{"id":"https://openalex.org/I52418104","display_name":"Universidade Federal do Paran\u00e1","ror":"https://ror.org/05syd6y78","country_code":"BR","type":"education","lineage":["https://openalex.org/I52418104"]}],"countries":["BR"],"is_corresponding":false,"raw_author_name":"Luiz S. Oliveira","raw_affiliation_strings":["DInf, Federal University of Parana (UFPR), Curitiba, Brazil"],"affiliations":[{"raw_affiliation_string":"DInf, Federal University of Parana (UFPR), Curitiba, Brazil","institution_ids":["https://openalex.org/I52418104"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":3,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":3.801,"has_fulltext":true,"fulltext_origin":"ngrams","cited_by_count":3,"citation_normalized_percentile":{"value":0.830357,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":75,"max":77},"biblio":{"volume":null,"issue":null,"first_page":"1316","last_page":"1321"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T13568","display_name":"Wood and Agarwood Research","score":0.9994,"subfield":{"id":"https://openalex.org/subfields/1605","display_name":"Organic Chemistry"},"field":{"id":"https://openalex.org/fields/16","display_name":"Chemistry"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T13568","display_name":"Wood and Agarwood Research","score":0.9994,"subfield":{"id":"https://openalex.org/subfields/1605","display_name":"Organic Chemistry"},"field":{"id":"https://openalex.org/fields/16","display_name":"Chemistry"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11164","display_name":"Remote Sensing and LiDAR Applications","score":0.9949,"subfield":{"id":"https://openalex.org/subfields/2305","display_name":"Environmental Engineering"},"field":{"id":"https://openalex.org/fields/23","display_name":"Environmental Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10627","display_name":"Advanced Image and Video Retrieval Techniques","score":0.9902,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/cost-reduction","display_name":"Cost reduction","score":0.74684954},{"id":"https://openalex.org/keywords/feature","display_name":"Feature (linguistics)","score":0.53978336},{"id":"https://openalex.org/keywords/texture","display_name":"Texture (cosmology)","score":0.41519615}],"concepts":[{"id":"https://openalex.org/C2778820799","wikidata":"https://www.wikidata.org/wiki/Q3454688","display_name":"Cost reduction","level":2,"score":0.74684954},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.7244183},{"id":"https://openalex.org/C52622490","wikidata":"https://www.wikidata.org/wiki/Q1026626","display_name":"Feature extraction","level":2,"score":0.6981488},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.62212306},{"id":"https://openalex.org/C111335779","wikidata":"https://www.wikidata.org/wiki/Q3454686","display_name":"Reduction (mathematics)","level":2,"score":0.6191828},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.5632625},{"id":"https://openalex.org/C2776401178","wikidata":"https://www.wikidata.org/wiki/Q12050496","display_name":"Feature (linguistics)","level":2,"score":0.53978336},{"id":"https://openalex.org/C2778755073","wikidata":"https://www.wikidata.org/wiki/Q10858537","display_name":"Scale (ratio)","level":2,"score":0.4458462},{"id":"https://openalex.org/C2780009758","wikidata":"https://www.wikidata.org/wiki/Q6804172","display_name":"Measure (data warehouse)","level":2,"score":0.4256225},{"id":"https://openalex.org/C2781195486","wikidata":"https://www.wikidata.org/wiki/Q289436","display_name":"Texture (cosmology)","level":3,"score":0.41519615},{"id":"https://openalex.org/C124101348","wikidata":"https://www.wikidata.org/wiki/Q172491","display_name":"Data mining","level":1,"score":0.38570857},{"id":"https://openalex.org/C115961682","wikidata":"https://www.wikidata.org/wiki/Q860623","display_name":"Image (mathematics)","level":2,"score":0.3472489},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.3309354},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.1548005},{"id":"https://openalex.org/C205649164","wikidata":"https://www.wikidata.org/wiki/Q1071","display_name":"Geography","level":0,"score":0.083269626},{"id":"https://openalex.org/C41895202","wikidata":"https://www.wikidata.org/wiki/Q8162","display_name":"Linguistics","level":1,"score":0.0},{"id":"https://openalex.org/C138885662","wikidata":"https://www.wikidata.org/wiki/Q5891","display_name":"Philosophy","level":0,"score":0.0},{"id":"https://openalex.org/C2524010","wikidata":"https://www.wikidata.org/wiki/Q8087","display_name":"Geometry","level":1,"score":0.0},{"id":"https://openalex.org/C187736073","wikidata":"https://www.wikidata.org/wiki/Q2920921","display_name":"Management","level":1,"score":0.0},{"id":"https://openalex.org/C58640448","wikidata":"https://www.wikidata.org/wiki/Q42515","display_name":"Cartography","level":1,"score":0.0},{"id":"https://openalex.org/C162324750","wikidata":"https://www.wikidata.org/wiki/Q8134","display_name":"Economics","level":0,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/smc.2017.8122795","pdf_url":null,"source":{"id":"https://openalex.org/S4363607746","display_name":"2022 IEEE International Conference on Systems, Man, and Cybernetics (SMC)","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[{"score":0.75,"display_name":"Life on land","id":"https://metadata.un.org/sdg/15"}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":16,"referenced_works":["https://openalex.org/W1004755574","https://openalex.org/W2007341930","https://openalex.org/W2014840619","https://openalex.org/W2052550738","https://openalex.org/W2075966403","https://openalex.org/W2099572745","https://openalex.org/W2128466927","https://openalex.org/W2129317603","https://openalex.org/W2159666059","https://openalex.org/W2163005195","https://openalex.org/W2167666191","https://openalex.org/W2182356372","https://openalex.org/W2295805126","https://openalex.org/W2545910093","https://openalex.org/W2912573428","https://openalex.org/W4285719527"],"related_works":["https://openalex.org/W4384785625","https://openalex.org/W4255837520","https://openalex.org/W4242594920","https://openalex.org/W4234808182","https://openalex.org/W2812758604","https://openalex.org/W2809151339","https://openalex.org/W2387011115","https://openalex.org/W2382043075","https://openalex.org/W2087637582","https://openalex.org/W1979716082"],"abstract_inverted_index":{"This":[0],"work":[1,74],"focuses":[2],"on":[3,8,77,101,126],"cost":[4,39,62,85,105,112,135,140],"reduction":[5,63,86,106,113],"methods,":[6],"applied":[7],"forest":[9,128],"species":[10,129],"recognition":[11,28,45,93,154],"systems":[12],"as":[13],"a":[14,127],"case-study.":[15],"Current":[16],"state-of-the-art":[17],"shows":[18],"that":[19,59,61],"the":[20,34,38,44,82,96,123,139,142,153],"accuracy":[21],"of":[22,46,84,91,122,141],"these":[23],"systems,":[24,71],"generally":[25],"employing":[26],"texture":[27],"approaches,":[29],"have":[30],"increased":[31,51],"considerably":[32],"in":[33,40,72],"past":[35],"years.":[36],"However,":[37],"time":[41],"to":[42,80,103,147],"perform":[43],"input":[47],"samples":[48],"has":[49],"also":[50,152],"proportionally.":[52],"By":[53],"taking":[54],"into":[55],"account":[56],"previous":[57],"research":[58],"demonstrated":[60,131],"at":[64,87,107,114],"classification":[65],"level":[66],"can":[67,144,156],"provide":[68],"much":[69],"faster":[70],"this":[73],"we":[75],"focus":[76],"proposing":[78],"metrics":[79,125],"measure":[81,104],"impact":[83],"another":[88],"important":[89],"module":[90],"image":[92],"system,":[94],"i.e":[95],"feature":[97,116],"extraction":[98,117],"stage,":[99],"and":[100,118],"how":[102],"global":[108,134],"level,":[109],"i.e.":[110],"combining":[111],"both":[115],"classification.":[119],"The":[120],"evaluation":[121],"proposed":[124],"dataset":[130],"that,":[132],"with":[133],"reduction,":[136],"not":[137],"only":[138],"system":[143],"be":[145,157],"reduced":[146],"less":[148],"than":[149],"1/20,":[150],"but":[151],"rates":[155],"improved.":[158]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W2775197080","counts_by_year":[{"year":2019,"cited_by_count":1},{"year":2018,"cited_by_count":1},{"year":2017,"cited_by_count":1}],"updated_date":"2024-12-10T20:24:37.274904","created_date":"2017-12-22"}