{"id":"https://openalex.org/W2773406252","doi":"https://doi.org/10.1109/smc.2017.8122737","title":"Imbalanced data classification using complementary fuzzy support vector machine techniques and SMOTE","display_name":"Imbalanced data classification using complementary fuzzy support vector machine techniques and SMOTE","publication_year":2017,"publication_date":"2017-10-01","ids":{"openalex":"https://openalex.org/W2773406252","doi":"https://doi.org/10.1109/smc.2017.8122737","mag":"2773406252"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/smc.2017.8122737","pdf_url":null,"source":{"id":"https://openalex.org/S4363607746","display_name":"2022 IEEE International Conference on Systems, Man, and Cybernetics (SMC)","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5046039241","display_name":"Ratchakoon Pruengkarn","orcid":null},"institutions":[{"id":"https://openalex.org/I176790772","display_name":"Murdoch University","ror":"https://ror.org/00r4sry34","country_code":"AU","type":"education","lineage":["https://openalex.org/I176790772"]}],"countries":["AU"],"is_corresponding":false,"raw_author_name":"Ratchakoon Pruengkarn","raw_affiliation_strings":["School of Engineering and Information Technology, Murdoch University"],"affiliations":[{"raw_affiliation_string":"School of Engineering and Information Technology, Murdoch University","institution_ids":["https://openalex.org/I176790772"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5062739845","display_name":"Kok Wai Wong","orcid":"https://orcid.org/0000-0001-8767-1031"},"institutions":[{"id":"https://openalex.org/I176790772","display_name":"Murdoch University","ror":"https://ror.org/00r4sry34","country_code":"AU","type":"education","lineage":["https://openalex.org/I176790772"]}],"countries":["AU"],"is_corresponding":false,"raw_author_name":"Kok Wai Wong","raw_affiliation_strings":["School of Engineering and Information Technology, Murdoch University"],"affiliations":[{"raw_affiliation_string":"School of Engineering and Information Technology, Murdoch University","institution_ids":["https://openalex.org/I176790772"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5086703248","display_name":"Chun Che Fung","orcid":"https://orcid.org/0000-0001-5182-3558"},"institutions":[{"id":"https://openalex.org/I176790772","display_name":"Murdoch University","ror":"https://ror.org/00r4sry34","country_code":"AU","type":"education","lineage":["https://openalex.org/I176790772"]}],"countries":["AU"],"is_corresponding":false,"raw_author_name":"Chun Che Fung","raw_affiliation_strings":["School of Engineering and Information Technology, Murdoch University"],"affiliations":[{"raw_affiliation_string":"School of Engineering and Information Technology, Murdoch University","institution_ids":["https://openalex.org/I176790772"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":1,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":0.608,"has_fulltext":true,"fulltext_origin":"ngrams","cited_by_count":13,"citation_normalized_percentile":{"value":0.587691,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":87,"max":88},"biblio":{"volume":null,"issue":null,"first_page":"978","last_page":"983"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T11652","display_name":"Imbalanced Data Classification Techniques","score":0.9996,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T11652","display_name":"Imbalanced Data Classification Techniques","score":0.9996,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10057","display_name":"Face and Expression Recognition","score":0.9904,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11550","display_name":"Text and Document Classification Technologies","score":0.9622,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/oversampling","display_name":"Oversampling","score":0.905312},{"id":"https://openalex.org/keywords/benchmark","display_name":"Benchmark (surveying)","score":0.8304494}],"concepts":[{"id":"https://openalex.org/C197323446","wikidata":"https://www.wikidata.org/wiki/Q331222","display_name":"Oversampling","level":3,"score":0.905312},{"id":"https://openalex.org/C185798385","wikidata":"https://www.wikidata.org/wiki/Q1161707","display_name":"Benchmark (surveying)","level":2,"score":0.8304494},{"id":"https://openalex.org/C12267149","wikidata":"https://www.wikidata.org/wiki/Q282453","display_name":"Support vector machine","level":2,"score":0.74250084},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.72183436},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.6412076},{"id":"https://openalex.org/C124101348","wikidata":"https://www.wikidata.org/wiki/Q172491","display_name":"Data mining","level":1,"score":0.5836632},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.5781426},{"id":"https://openalex.org/C58166","wikidata":"https://www.wikidata.org/wiki/Q224821","display_name":"Fuzzy logic","level":2,"score":0.5632602},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.46758652},{"id":"https://openalex.org/C2776257435","wikidata":"https://www.wikidata.org/wiki/Q1576430","display_name":"Bandwidth (computing)","level":2,"score":0.08564055},{"id":"https://openalex.org/C31258907","wikidata":"https://www.wikidata.org/wiki/Q1301371","display_name":"Computer network","level":1,"score":0.0},{"id":"https://openalex.org/C13280743","wikidata":"https://www.wikidata.org/wiki/Q131089","display_name":"Geodesy","level":1,"score":0.0},{"id":"https://openalex.org/C205649164","wikidata":"https://www.wikidata.org/wiki/Q1071","display_name":"Geography","level":0,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/smc.2017.8122737","pdf_url":null,"source":{"id":"https://openalex.org/S4363607746","display_name":"2022 IEEE International Conference on Systems, Man, and Cybernetics (SMC)","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":22,"referenced_works":["https://openalex.org/W150916163","https://openalex.org/W1581587400","https://openalex.org/W1591261915","https://openalex.org/W1966748751","https://openalex.org/W1967127231","https://openalex.org/W1993220166","https://openalex.org/W1996159834","https://openalex.org/W2067151470","https://openalex.org/W2070533962","https://openalex.org/W2074888575","https://openalex.org/W2097645005","https://openalex.org/W2107686700","https://openalex.org/W2121394390","https://openalex.org/W2132791018","https://openalex.org/W2137672438","https://openalex.org/W2139179134","https://openalex.org/W2147813562","https://openalex.org/W2148143831","https://openalex.org/W2164330572","https://openalex.org/W2182722412","https://openalex.org/W2523786659","https://openalex.org/W3120740533"],"related_works":["https://openalex.org/W4386214543","https://openalex.org/W4386005305","https://openalex.org/W4206637278","https://openalex.org/W3082051559","https://openalex.org/W2953675148","https://openalex.org/W2781247653","https://openalex.org/W2766503024","https://openalex.org/W2141301039","https://openalex.org/W1969988626","https://openalex.org/W1682621979"],"abstract_inverted_index":{"A":[0],"hybrid":[1],"sampling":[2],"technique":[3,28],"is":[4,41],"proposed":[5,27,107],"by":[6,70],"combining":[7],"Complementary":[8],"Fuzzy":[9],"Support":[10],"Vector":[11],"Machine":[12],"(CMTFSVM)":[13],"and":[14,39,55,97,114],"Synthetic":[15],"Minority":[16],"Oversampling":[17],"Technique":[18],"(SMOTE)":[19],"for":[20,79],"handling":[21],"the":[22,36,80,86,106],"imbalanced":[23,112],"classification":[24,37],"problem.":[25],"The":[26,47,63],"uses":[29],"an":[30],"optimised":[31],"membership":[32],"function":[33],"to":[34],"enhance":[35],"performance":[38],"it":[40,84],"compared":[42],"with":[43,93,111],"three":[44],"different":[45],"classifiers.":[46],"experiments":[48],"consisted":[49],"of":[50,60,95,99],"four":[51],"standard":[52],"benchmark":[53,81,113],"datasets":[54],"one":[56],"real":[57,90,115],"world":[58,91,116],"data":[59],"plant":[61],"cells.":[62],"results":[64],"revealed":[65],"that":[66,105],"implementing":[67],"CMTFSVM":[68],"followed":[69],"SMOTE":[71],"provided":[72],"better":[73],"result":[74,88],"over":[75],"other":[76],"FSVM":[77],"classifiers":[78],"datasets.":[82],"Furthermore,":[83],"presented":[85],"best":[87],"on":[89],"dataset":[92],"0.9589":[94],"G-mean":[96],"0.9598":[98],"AUC.":[100],"It":[101],"can":[102],"be":[103],"concluded":[104],"techniques":[108],"work":[109],"well":[110],"data.":[117]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W2773406252","counts_by_year":[{"year":2021,"cited_by_count":5},{"year":2020,"cited_by_count":2},{"year":2019,"cited_by_count":2},{"year":2018,"cited_by_count":4}],"updated_date":"2024-12-16T11:31:02.303004","created_date":"2017-12-22"}