{"id":"https://openalex.org/W2891872124","doi":"https://doi.org/10.1109/smartworld.2018.00191","title":"Detecting Transportation Modes with Low-Power-Consumption Sensors Using Recurrent Neural Network","display_name":"Detecting Transportation Modes with Low-Power-Consumption Sensors Using Recurrent Neural Network","publication_year":2018,"publication_date":"2018-10-01","ids":{"openalex":"https://openalex.org/W2891872124","doi":"https://doi.org/10.1109/smartworld.2018.00191","mag":"2891872124"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/smartworld.2018.00191","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5100769485","display_name":"Hao Wang","orcid":"https://orcid.org/0000-0002-6978-4734"},"institutions":[{"id":"https://openalex.org/I139759216","display_name":"Beijing University of Posts and Telecommunications","ror":"https://ror.org/04w9fbh59","country_code":"CN","type":"education","lineage":["https://openalex.org/I139759216"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Hao Wang","raw_affiliation_strings":["School of Software Engineering, Beijing University of Posts and Telecommunications, Beijing, China"],"affiliations":[{"raw_affiliation_string":"School of Software Engineering, Beijing University of Posts and Telecommunications, Beijing, China","institution_ids":["https://openalex.org/I139759216"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5052635380","display_name":"Haiyong Luo","orcid":"https://orcid.org/0000-0001-6827-4225"},"institutions":[{"id":"https://openalex.org/I4210090176","display_name":"Institute of Computing Technology","ror":"https://ror.org/0090r4d87","country_code":"CN","type":"facility","lineage":["https://openalex.org/I19820366","https://openalex.org/I4210090176"]},{"id":"https://openalex.org/I19820366","display_name":"Chinese Academy of Sciences","ror":"https://ror.org/034t30j35","country_code":"CN","type":"government","lineage":["https://openalex.org/I19820366"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Haiyong Luo","raw_affiliation_strings":["Institute of Computing, Technology Chinese Academy of Sciences, Beijing, China"],"affiliations":[{"raw_affiliation_string":"Institute of Computing, Technology Chinese Academy of Sciences, Beijing, China","institution_ids":["https://openalex.org/I4210090176","https://openalex.org/I19820366"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5100329778","display_name":"Fang Zhao","orcid":"https://orcid.org/0000-0002-4784-5778"},"institutions":[{"id":"https://openalex.org/I139759216","display_name":"Beijing University of Posts and Telecommunications","ror":"https://ror.org/04w9fbh59","country_code":"CN","type":"education","lineage":["https://openalex.org/I139759216"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Fang Zhao","raw_affiliation_strings":["School of Software Engineering, Beijing University of Posts and Telecommunications, Beijing, China"],"affiliations":[{"raw_affiliation_string":"School of Software Engineering, Beijing University of Posts and Telecommunications, Beijing, China","institution_ids":["https://openalex.org/I139759216"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5028431795","display_name":"Yanjun Qin","orcid":"https://orcid.org/0000-0001-5011-8697"},"institutions":[{"id":"https://openalex.org/I139759216","display_name":"Beijing University of Posts and Telecommunications","ror":"https://ror.org/04w9fbh59","country_code":"CN","type":"education","lineage":["https://openalex.org/I139759216"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Yanjun Qin","raw_affiliation_strings":["School of Software Engineering, Beijing University of Posts and Telecommunications, Beijing, China"],"affiliations":[{"raw_affiliation_string":"School of Software Engineering, Beijing University of Posts and Telecommunications, Beijing, China","institution_ids":["https://openalex.org/I139759216"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5078322039","display_name":"Zhongliang Zhao","orcid":"https://orcid.org/0000-0002-0979-9272"},"institutions":[{"id":"https://openalex.org/I118564535","display_name":"University of Bern","ror":"https://ror.org/02k7v4d05","country_code":"CH","type":"education","lineage":["https://openalex.org/I118564535"]}],"countries":["CH"],"is_corresponding":false,"raw_author_name":"Zhongliang Zhao","raw_affiliation_strings":["Institute of Computer, Science University of Bern, Bern, Switzerland"],"affiliations":[{"raw_affiliation_string":"Institute of Computer, Science University of Bern, Bern, Switzerland","institution_ids":["https://openalex.org/I118564535"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5035424826","display_name":"Yiqu Chen","orcid":null},"institutions":[{"id":"https://openalex.org/I139759216","display_name":"Beijing University of Posts and Telecommunications","ror":"https://ror.org/04w9fbh59","country_code":"CN","type":"education","lineage":["https://openalex.org/I139759216"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Yiqu Chen","raw_affiliation_strings":["School of Software Engineering, Beijing University of Posts and Telecommunications, Beijing, China"],"affiliations":[{"raw_affiliation_string":"School of Software Engineering, Beijing University of Posts and Telecommunications, Beijing, China","institution_ids":["https://openalex.org/I139759216"]}]}],"institution_assertions":[],"countries_distinct_count":2,"institutions_distinct_count":4,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":1.117,"has_fulltext":true,"fulltext_origin":"ngrams","cited_by_count":10,"citation_normalized_percentile":{"value":0.669444,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":85,"max":86},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T11980","display_name":"Human Mobility and Location-Based Analysis","score":0.9999,"subfield":{"id":"https://openalex.org/subfields/3313","display_name":"Transportation"},"field":{"id":"https://openalex.org/fields/33","display_name":"Social Sciences"},"domain":{"id":"https://openalex.org/domains/2","display_name":"Social Sciences"}},"topics":[{"id":"https://openalex.org/T11980","display_name":"Human Mobility and Location-Based Analysis","score":0.9999,"subfield":{"id":"https://openalex.org/subfields/3313","display_name":"Transportation"},"field":{"id":"https://openalex.org/fields/33","display_name":"Social Sciences"},"domain":{"id":"https://openalex.org/domains/2","display_name":"Social Sciences"}},{"id":"https://openalex.org/T11344","display_name":"Traffic Prediction and Management Techniques","score":0.9876,"subfield":{"id":"https://openalex.org/subfields/2215","display_name":"Building and Construction"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11819","display_name":"Data-Driven Disease Surveillance","score":0.9583,"subfield":{"id":"https://openalex.org/subfields/2713","display_name":"Epidemiology"},"field":{"id":"https://openalex.org/fields/27","display_name":"Medicine"},"domain":{"id":"https://openalex.org/domains/4","display_name":"Health Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/mode","display_name":"Mode (computer interface)","score":0.48195478},{"id":"https://openalex.org/keywords/data-pre-processing","display_name":"Data pre-processing","score":0.42394215}],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.69861203},{"id":"https://openalex.org/C60229501","wikidata":"https://www.wikidata.org/wiki/Q18822","display_name":"Global Positioning System","level":2,"score":0.5741234},{"id":"https://openalex.org/C79403827","wikidata":"https://www.wikidata.org/wiki/Q3988","display_name":"Real-time computing","level":1,"score":0.5235907},{"id":"https://openalex.org/C48677424","wikidata":"https://www.wikidata.org/wiki/Q6888088","display_name":"Mode (computer interface)","level":2,"score":0.48195478},{"id":"https://openalex.org/C108583219","wikidata":"https://www.wikidata.org/wiki/Q197536","display_name":"Deep learning","level":2,"score":0.46613213},{"id":"https://openalex.org/C190839683","wikidata":"https://www.wikidata.org/wiki/Q2448197","display_name":"Train","level":2,"score":0.46537182},{"id":"https://openalex.org/C89805583","wikidata":"https://www.wikidata.org/wiki/Q192940","display_name":"Accelerometer","level":2,"score":0.42458183},{"id":"https://openalex.org/C10551718","wikidata":"https://www.wikidata.org/wiki/Q5227332","display_name":"Data pre-processing","level":2,"score":0.42394215},{"id":"https://openalex.org/C50644808","wikidata":"https://www.wikidata.org/wiki/Q192776","display_name":"Artificial neural network","level":2,"score":0.41989022},{"id":"https://openalex.org/C158488048","wikidata":"https://www.wikidata.org/wiki/Q483400","display_name":"Gyroscope","level":2,"score":0.4181745},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.38760817},{"id":"https://openalex.org/C127413603","wikidata":"https://www.wikidata.org/wiki/Q11023","display_name":"Engineering","level":0,"score":0.21077758},{"id":"https://openalex.org/C76155785","wikidata":"https://www.wikidata.org/wiki/Q418","display_name":"Telecommunications","level":1,"score":0.18647093},{"id":"https://openalex.org/C58640448","wikidata":"https://www.wikidata.org/wiki/Q42515","display_name":"Cartography","level":1,"score":0.0},{"id":"https://openalex.org/C146978453","wikidata":"https://www.wikidata.org/wiki/Q3798668","display_name":"Aerospace engineering","level":1,"score":0.0},{"id":"https://openalex.org/C205649164","wikidata":"https://www.wikidata.org/wiki/Q1071","display_name":"Geography","level":0,"score":0.0},{"id":"https://openalex.org/C111919701","wikidata":"https://www.wikidata.org/wiki/Q9135","display_name":"Operating system","level":1,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/smartworld.2018.00191","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[{"id":"https://metadata.un.org/sdg/11","display_name":"Sustainable cities and communities","score":0.82}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":29,"referenced_works":["https://openalex.org/W1502364872","https://openalex.org/W1511047431","https://openalex.org/W1522301498","https://openalex.org/W1751470192","https://openalex.org/W1924770834","https://openalex.org/W1987228002","https://openalex.org/W2009155608","https://openalex.org/W2020642377","https://openalex.org/W2053831280","https://openalex.org/W2064675550","https://openalex.org/W2095705004","https://openalex.org/W2103518983","https://openalex.org/W2108328714","https://openalex.org/W2108467170","https://openalex.org/W2110991980","https://openalex.org/W2112316706","https://openalex.org/W2117130368","https://openalex.org/W2143612262","https://openalex.org/W2544649410","https://openalex.org/W2609649633","https://openalex.org/W2725533054","https://openalex.org/W2743898215","https://openalex.org/W2768758757","https://openalex.org/W2768872492","https://openalex.org/W2769987042","https://openalex.org/W2919115771","https://openalex.org/W2964121744","https://openalex.org/W2964350365","https://openalex.org/W46659105"],"related_works":["https://openalex.org/W4303613760","https://openalex.org/W4290466010","https://openalex.org/W4234814094","https://openalex.org/W2545168295","https://openalex.org/W2417246878","https://openalex.org/W2365897603","https://openalex.org/W2361871310","https://openalex.org/W2356006086","https://openalex.org/W2156308897","https://openalex.org/W1982154684"],"abstract_inverted_index":{"With":[0],"the":[1,8,36,101,107,121,140,169],"quick":[2],"development":[3],"of":[4,10,111,148],"mobile":[5],"Internet":[6],"and":[7,32,95,116,152,187],"popularity":[9],"smartphones,":[11],"smartphone-based":[12],"transportation":[13,40,66,78,122,149,158,172,181],"mode":[14,41,67,150],"detection":[15,42,68],"has":[16,44],"become":[17],"a":[18,64,131,146],"hot":[19],"topic,":[20],"which":[21,97],"is":[22,133],"able":[23],"to":[24,56,76,119,124,144,156,178],"provide":[25],"effective":[26],"data":[27],"support":[28],"for":[29],"urban":[30],"planning":[31],"traffic":[33],"management.":[34],"Though":[35],"popular":[37],"GPS":[38],"based":[39],"method":[43,49],"achieved":[45],"reasonable":[46],"accuracy,":[47],"this":[48,84,154],"consumes":[50],"large":[51],"power,":[52],"thus":[53],"limiting":[54],"it":[55,118],"be":[57],"used":[58],"in":[59,100],"smartphones.":[60,103],"Here,":[61],"we":[62,105,138],"propose":[63],"novel":[65],"algorithm":[69,85,143],"using":[70],"recurrent":[71],"neural":[72],"network.":[73],"In":[74],"order":[75],"identify":[77],"modes":[79,123],"with":[80,175],"low":[81],"power":[82],"consumption,":[83],"only":[86],"uses":[87],"four":[88,180],"low-power-consumption":[89],"sensors":[90],"(namely":[91],"accelerator,":[92],"gyroscope,":[93],"magnetometer":[94],"barometer)":[96],"are":[98],"embedded":[99],"commodity":[102],"Furthermore,":[104],"exploited":[106],"good":[108],"representative":[109],"ability":[110],"Long":[112],"Short-Term":[113],"Memory":[114],"(LSTM)":[115],"applied":[117],"recognizing":[120],"achieve":[125],"higher":[126],"accuracy.":[127],"To":[128],"filter":[129],"noises,":[130],"preprocessing":[132],"applied.":[134],"After":[135],"calculating":[136],"features,":[137],"adopt":[139],"LSTM":[141],"learning":[142],"train":[145],"model":[147,155],"recognition":[151,173],"employ":[153],"predict":[157],"modes.":[159],"Extensive":[160],"experimental":[161],"results":[162],"indicate":[163],"that":[164],"our":[165],"proposed":[166],"approach":[167],"outperforms":[168],"compared":[170],"state-of-the-art":[171],"methods":[174],"96.9%":[176],"accuracy":[177],"detect":[179],"modes,":[182],"namely":[183],"buses,":[184],"cars,":[185],"subways,":[186],"trains.":[188]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W2891872124","counts_by_year":[{"year":2022,"cited_by_count":6},{"year":2021,"cited_by_count":2},{"year":2019,"cited_by_count":2}],"updated_date":"2024-12-08T02:04:46.726528","created_date":"2018-09-27"}