{"id":"https://openalex.org/W3018989443","doi":"https://doi.org/10.1109/smartnets48225.2019.9069779","title":"A Novel Data Cleansing Approach for Sensitive Applications of Wireless Sensor Networks","display_name":"A Novel Data Cleansing Approach for Sensitive Applications of Wireless Sensor Networks","publication_year":2019,"publication_date":"2019-12-01","ids":{"openalex":"https://openalex.org/W3018989443","doi":"https://doi.org/10.1109/smartnets48225.2019.9069779","mag":"3018989443"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/smartnets48225.2019.9069779","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5012440258","display_name":"Chafiq Titouna","orcid":null},"institutions":[{"id":"https://openalex.org/I110736937","display_name":"D\u00e9l\u00e9gation Paris 5","ror":"https://ror.org/02e0y6e06","country_code":"FR","type":"government","lineage":["https://openalex.org/I110736937","https://openalex.org/I154526488"]},{"id":"https://openalex.org/I204730241","display_name":"Universit\u00e9 Paris Cit\u00e9","ror":"https://ror.org/05f82e368","country_code":"FR","type":"education","lineage":["https://openalex.org/I204730241"]}],"countries":["FR"],"is_corresponding":false,"raw_author_name":"Chafiq Titouna","raw_affiliation_strings":["Paris Descartes University, France"],"affiliations":[{"raw_affiliation_string":"Paris Descartes University, France","institution_ids":["https://openalex.org/I110736937","https://openalex.org/I204730241"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5086784630","display_name":"Farid Na\u00eft\u2010Abdesselam","orcid":"https://orcid.org/0000-0002-5042-5387"},"institutions":[{"id":"https://openalex.org/I75421653","display_name":"University of Missouri\u2013Kansas City","ror":"https://ror.org/01w0d5g70","country_code":"US","type":"education","lineage":["https://openalex.org/I75421653"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Farid Nait-Abdesselam","raw_affiliation_strings":["University of Missouri, Kansas City, USA"],"affiliations":[{"raw_affiliation_string":"University of Missouri, Kansas City, USA","institution_ids":["https://openalex.org/I75421653"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5060316178","display_name":"Ashfaq Khokhar","orcid":"https://orcid.org/0000-0002-6504-8502"},"institutions":[{"id":"https://openalex.org/I173911158","display_name":"Iowa State University","ror":"https://ror.org/04rswrd78","country_code":"US","type":"education","lineage":["https://openalex.org/I173911158"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Ashfaq Khokhar","raw_affiliation_strings":["Iowa State University, USA"],"affiliations":[{"raw_affiliation_string":"Iowa State University, USA","institution_ids":["https://openalex.org/I173911158"]}]}],"institution_assertions":[],"countries_distinct_count":2,"institutions_distinct_count":4,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":0.563,"has_fulltext":false,"cited_by_count":4,"citation_normalized_percentile":{"value":0.668243,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":77,"max":79},"biblio":{"volume":null,"issue":null,"first_page":"1","last_page":"6"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T11512","display_name":"Anomaly Detection Techniques and Applications","score":0.9999,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T11512","display_name":"Anomaly Detection Techniques and Applications","score":0.9999,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T12879","display_name":"Distributed Sensor Networks and Detection Algorithms","score":0.9941,"subfield":{"id":"https://openalex.org/subfields/1705","display_name":"Computer Networks and Communications"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T12761","display_name":"Data Stream Mining Techniques","score":0.9933,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/mahalanobis-distance","display_name":"Mahalanobis distance","score":0.6045667},{"id":"https://openalex.org/keywords/data-cleansing","display_name":"Data cleansing","score":0.5006764}],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.82499444},{"id":"https://openalex.org/C79337645","wikidata":"https://www.wikidata.org/wiki/Q779824","display_name":"Outlier","level":2,"score":0.7261651},{"id":"https://openalex.org/C739882","wikidata":"https://www.wikidata.org/wiki/Q3560506","display_name":"Anomaly detection","level":2,"score":0.6840501},{"id":"https://openalex.org/C77052588","wikidata":"https://www.wikidata.org/wiki/Q644307","display_name":"Constant false alarm rate","level":2,"score":0.6438372},{"id":"https://openalex.org/C24590314","wikidata":"https://www.wikidata.org/wiki/Q336038","display_name":"Wireless sensor network","level":2,"score":0.6216207},{"id":"https://openalex.org/C124101348","wikidata":"https://www.wikidata.org/wiki/Q172491","display_name":"Data mining","level":1,"score":0.6189842},{"id":"https://openalex.org/C1921717","wikidata":"https://www.wikidata.org/wiki/Q1334846","display_name":"Mahalanobis distance","level":2,"score":0.6045667},{"id":"https://openalex.org/C42199009","wikidata":"https://www.wikidata.org/wiki/Q1172378","display_name":"Data cleansing","level":4,"score":0.5006764},{"id":"https://openalex.org/C73555534","wikidata":"https://www.wikidata.org/wiki/Q622825","display_name":"Cluster analysis","level":2,"score":0.4433034},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.41025597},{"id":"https://openalex.org/C24756922","wikidata":"https://www.wikidata.org/wiki/Q1757694","display_name":"Data quality","level":3,"score":0.29834884},{"id":"https://openalex.org/C176217482","wikidata":"https://www.wikidata.org/wiki/Q860554","display_name":"Metric (unit)","level":2,"score":0.12152031},{"id":"https://openalex.org/C31258907","wikidata":"https://www.wikidata.org/wiki/Q1301371","display_name":"Computer network","level":1,"score":0.11632654},{"id":"https://openalex.org/C127413603","wikidata":"https://www.wikidata.org/wiki/Q11023","display_name":"Engineering","level":0,"score":0.07637429},{"id":"https://openalex.org/C21547014","wikidata":"https://www.wikidata.org/wiki/Q1423657","display_name":"Operations management","level":1,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/smartnets48225.2019.9069779","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[{"display_name":"Affordable and clean energy","id":"https://metadata.un.org/sdg/7","score":0.85}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":23,"referenced_works":["https://openalex.org/W134388586","https://openalex.org/W1648885110","https://openalex.org/W168332103","https://openalex.org/W1912123407","https://openalex.org/W2008906462","https://openalex.org/W2010254953","https://openalex.org/W2049058890","https://openalex.org/W2056081083","https://openalex.org/W2095713606","https://openalex.org/W2104846640","https://openalex.org/W2122053769","https://openalex.org/W2127543052","https://openalex.org/W2150015649","https://openalex.org/W2159080219","https://openalex.org/W2171427043","https://openalex.org/W2173467521","https://openalex.org/W2625023596","https://openalex.org/W2765607255","https://openalex.org/W2769577427","https://openalex.org/W2891536563","https://openalex.org/W2953352672","https://openalex.org/W3100117785","https://openalex.org/W4236354166"],"related_works":["https://openalex.org/W4386482528","https://openalex.org/W4382795578","https://openalex.org/W3182289794","https://openalex.org/W3111802945","https://openalex.org/W3107369729","https://openalex.org/W2946096271","https://openalex.org/W2499612753","https://openalex.org/W2402648945","https://openalex.org/W2355463328","https://openalex.org/W2295423552"],"abstract_inverted_index":{"In":[0,16],"many":[1],"applications":[2],"of":[3,25,79,90],"wireless":[4],"sensor":[5],"networks,":[6],"data":[7,44,51],"collection":[8],"happens":[9],"to":[10,18,37,49],"be":[11,33],"generally":[12,47],"unreliable":[13],"and":[14,22,39,58,92,137],"inaccurate.":[15],"order":[17,36],"improve":[19],"the":[20,23,77,103,119,124],"quality":[21],"accuracy":[24],"this":[26,43,56],"collected":[27],"data,":[28],"a":[29,60,83,99],"deep":[30],"analysis":[31],"should":[32],"applied":[34],"in":[35,70],"spot":[38],"remove":[40],"abnormalities":[41],"that":[42,68,118],"may":[45],"contain,":[46],"referred":[48],"as":[50],"outliers.":[52],"This":[53],"paper":[54],"tackles":[55],"problem":[57,78],"presents":[59],"novel":[61],"Distributed":[62],"Outlier":[63],"Detection":[64],"Approach,":[65],"dubbed":[66],"DODA,":[67],"works":[69],"two":[71],"steps:":[72],"(1)":[73],"first,":[74],"it":[75],"models":[76],"detecting":[80],"outliers":[81,97],"with":[82],"Na\u00efve":[84],"Bayesian":[85],"network":[86],"within":[87],"each":[88],"cluster":[89,104],"sensors,":[91],"(2)":[93],"then":[94],"detects":[95],"these":[96],"using":[98],"Mahalanobis":[100],"distance":[101],"at":[102],"heads.":[105],"Through":[106],"extensive":[107],"experiments,":[108],"conducted":[109],"on":[110],"real":[111],"datasets":[112],"from":[113],"Intel-Berkeley":[114],"Laboratory,":[115],"we":[116],"demonstrated":[117],"proposal":[120],"performs":[121],"better":[122],"than":[123],"recent":[125],"state-of-the-art":[126],"algorithms":[127],"under":[128],"several":[129],"metrics":[130],"such":[131],"energy":[132],"consumption,":[133],"false":[134],"alarm":[135],"rate":[136],"detection":[138],"accuracy.":[139]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W3018989443","counts_by_year":[{"year":2022,"cited_by_count":1},{"year":2021,"cited_by_count":1},{"year":2020,"cited_by_count":2}],"updated_date":"2025-01-18T06:20:32.403450","created_date":"2020-05-01"}