{"id":"https://openalex.org/W2798571964","doi":"https://doi.org/10.1109/smartgridcomm.2017.8340682","title":"A comparison of performance metrics for event classification in Non-Intrusive Load Monitoring","display_name":"A comparison of performance metrics for event classification in Non-Intrusive Load Monitoring","publication_year":2017,"publication_date":"2017-10-01","ids":{"openalex":"https://openalex.org/W2798571964","doi":"https://doi.org/10.1109/smartgridcomm.2017.8340682","mag":"2798571964"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/smartgridcomm.2017.8340682","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5047119987","display_name":"Lucas Pereira","orcid":"https://orcid.org/0000-0002-9110-8775"},"institutions":[],"countries":["PT"],"is_corresponding":false,"raw_author_name":"Lucas Pereira","raw_affiliation_strings":["M-ITI / LARSyS Funchal, Portugal"],"affiliations":[{"raw_affiliation_string":"M-ITI / LARSyS Funchal, Portugal","institution_ids":[]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5074097147","display_name":"Nuno Nunes","orcid":"https://orcid.org/0000-0002-2498-0643"},"institutions":[],"countries":["PT"],"is_corresponding":false,"raw_author_name":"Nuno Nunes","raw_affiliation_strings":["Tecnico U.Lisbon, M-ITI / LARSyS, Lisbon, Portugal"],"affiliations":[{"raw_affiliation_string":"Tecnico U.Lisbon, M-ITI / LARSyS, Lisbon, Portugal","institution_ids":[]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":0,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":2.285,"has_fulltext":true,"fulltext_origin":"ngrams","cited_by_count":28,"citation_normalized_percentile":{"value":0.843614,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":93,"max":94},"biblio":{"volume":null,"issue":null,"first_page":"159","last_page":"164"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T12127","display_name":"Log Analysis and System Performance Diagnosis","score":0.9996,"subfield":{"id":"https://openalex.org/subfields/1705","display_name":"Computer Networks and Communications"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T12127","display_name":"Log Analysis and System Performance Diagnosis","score":0.9996,"subfield":{"id":"https://openalex.org/subfields/1705","display_name":"Computer Networks and Communications"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10400","display_name":"Network Intrusion Detection and Defense Mechanisms","score":0.998,"subfield":{"id":"https://openalex.org/subfields/1705","display_name":"Computer Networks and Communications"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11512","display_name":"Anomaly Detection in High-Dimensional Data","score":0.9946,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/macro","display_name":"Macro","score":0.63259405},{"id":"https://openalex.org/keywords/performance-prediction","display_name":"Performance Prediction","score":0.539911},{"id":"https://openalex.org/keywords/model-driven-performance-prediction","display_name":"Model-driven Performance Prediction","score":0.533917},{"id":"https://openalex.org/keywords/statistical-classification","display_name":"Statistical classification","score":0.46029767}],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.72214544},{"id":"https://openalex.org/C49937458","wikidata":"https://www.wikidata.org/wiki/Q2599292","display_name":"Probabilistic logic","level":2,"score":0.6691189},{"id":"https://openalex.org/C166955791","wikidata":"https://www.wikidata.org/wiki/Q629579","display_name":"Macro","level":2,"score":0.63259405},{"id":"https://openalex.org/C2779662365","wikidata":"https://www.wikidata.org/wiki/Q5416694","display_name":"Event (particle physics)","level":2,"score":0.61932737},{"id":"https://openalex.org/C124101348","wikidata":"https://www.wikidata.org/wiki/Q172491","display_name":"Data mining","level":1,"score":0.5867955},{"id":"https://openalex.org/C2777212361","wikidata":"https://www.wikidata.org/wiki/Q5127848","display_name":"Class (philosophy)","level":2,"score":0.5016196},{"id":"https://openalex.org/C110083411","wikidata":"https://www.wikidata.org/wiki/Q1744628","display_name":"Statistical classification","level":2,"score":0.46029767},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.45990866},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.45070195},{"id":"https://openalex.org/C121332964","wikidata":"https://www.wikidata.org/wiki/Q413","display_name":"Physics","level":0,"score":0.0},{"id":"https://openalex.org/C62520636","wikidata":"https://www.wikidata.org/wiki/Q944","display_name":"Quantum mechanics","level":1,"score":0.0},{"id":"https://openalex.org/C199360897","wikidata":"https://www.wikidata.org/wiki/Q9143","display_name":"Programming language","level":1,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/smartgridcomm.2017.8340682","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":26,"referenced_works":["https://openalex.org/W1138573735","https://openalex.org/W1554663460","https://openalex.org/W1679846099","https://openalex.org/W2003588057","https://openalex.org/W2011376369","https://openalex.org/W2020517213","https://openalex.org/W2039240409","https://openalex.org/W2062611449","https://openalex.org/W2078921071","https://openalex.org/W2109553965","https://openalex.org/W2116825089","https://openalex.org/W2122111042","https://openalex.org/W2133864802","https://openalex.org/W2133990480","https://openalex.org/W2151729265","https://openalex.org/W2153635508","https://openalex.org/W2157825442","https://openalex.org/W2163757302","https://openalex.org/W2171665309","https://openalex.org/W2289387268","https://openalex.org/W2307973085","https://openalex.org/W2733023756","https://openalex.org/W2789145864","https://openalex.org/W2921676705","https://openalex.org/W3014813097","https://openalex.org/W591093729"],"related_works":["https://openalex.org/W81423522","https://openalex.org/W4386206750","https://openalex.org/W4239992647","https://openalex.org/W4238700786","https://openalex.org/W2488264085","https://openalex.org/W2150013480","https://openalex.org/W2076325756","https://openalex.org/W2030816003","https://openalex.org/W1554458299","https://openalex.org/W1509860481"],"abstract_inverted_index":{"In":[0],"this":[1,51],"work,":[2],"we":[3],"analyse":[4],"experimentally":[5],"the":[6,28,71],"behaviour":[7],"of":[8,65],"18":[9],"different":[10],"performance":[11,34,90],"metrics":[12,35,62],"when":[13,86],"applied":[14],"to":[15],"classification":[16,53],"algorithms":[17],"in":[18,38,50,63],"event-based":[19],"Non-Intrusive":[20],"Load":[21],"Monitoring,":[22],"identifying":[23],"relationships":[24],"and":[25,59],"clusters":[26],"between":[27],"measures.":[29],"Our":[30,45],"results":[31,46,72],"indicate":[32],"that":[33,49,75,82],"have":[36],"more":[37,88],"common":[39],"than":[40],"what":[41],"was":[42],"initially":[43],"expected.":[44],"also":[47,73],"suggest":[48,74],"multi-class":[52],"problem,":[54],"researchers":[55],"should":[56],"avoid":[57],"micro-average":[58],"unweighted":[60],"macro-average":[61,68],"favor":[64],"their":[66],"weighted":[67],"counterparts.":[69],"Finally,":[70],"probabilistic":[76],"measures":[77],"can":[78],"provide":[79],"important":[80],"information":[81],"is":[83],"not":[84],"available":[85],"using":[87],"traditional":[89],"metrics.":[91]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W2798571964","counts_by_year":[{"year":2023,"cited_by_count":4},{"year":2022,"cited_by_count":3},{"year":2021,"cited_by_count":8},{"year":2020,"cited_by_count":7},{"year":2019,"cited_by_count":3},{"year":2018,"cited_by_count":2}],"updated_date":"2024-11-27T04:35:36.549406","created_date":"2018-05-07"}