{"id":"https://openalex.org/W4319862672","doi":"https://doi.org/10.1109/slt54892.2023.10022475","title":"Streaming Bilingual End-to-End ASR Model Using Attention Over Multiple Softmax","display_name":"Streaming Bilingual End-to-End ASR Model Using Attention Over Multiple Softmax","publication_year":2023,"publication_date":"2023-01-09","ids":{"openalex":"https://openalex.org/W4319862672","doi":"https://doi.org/10.1109/slt54892.2023.10022475"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/slt54892.2023.10022475","pdf_url":null,"source":{"id":"https://openalex.org/S4363605953","display_name":"2022 IEEE Spoken Language Technology Workshop (SLT)","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["arxiv","crossref","datacite"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"http://arxiv.org/pdf/2401.11645","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5042760582","display_name":"Aditya Patil","orcid":"https://orcid.org/0000-0002-6846-3584"},"institutions":[{"id":"https://openalex.org/I4210162141","display_name":"Microsoft (India)","ror":"https://ror.org/04ww0w091","country_code":"IN","type":"company","lineage":["https://openalex.org/I1290206253","https://openalex.org/I4210162141"]}],"countries":["IN"],"is_corresponding":false,"raw_author_name":"Aditya Patil","raw_affiliation_strings":["Microsoft Corporation, India"],"affiliations":[{"raw_affiliation_string":"Microsoft Corporation, India","institution_ids":["https://openalex.org/I4210162141"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5019937451","display_name":"Vikas Joshi","orcid":"https://orcid.org/0000-0003-4467-3621"},"institutions":[{"id":"https://openalex.org/I4210162141","display_name":"Microsoft (India)","ror":"https://ror.org/04ww0w091","country_code":"IN","type":"company","lineage":["https://openalex.org/I1290206253","https://openalex.org/I4210162141"]}],"countries":["IN"],"is_corresponding":false,"raw_author_name":"Vikas Joshi","raw_affiliation_strings":["Microsoft Corporation, India"],"affiliations":[{"raw_affiliation_string":"Microsoft Corporation, India","institution_ids":["https://openalex.org/I4210162141"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5050546237","display_name":"Purvi Agrawal","orcid":"https://orcid.org/0000-0002-1165-8348"},"institutions":[{"id":"https://openalex.org/I4210162141","display_name":"Microsoft (India)","ror":"https://ror.org/04ww0w091","country_code":"IN","type":"company","lineage":["https://openalex.org/I1290206253","https://openalex.org/I4210162141"]}],"countries":["IN"],"is_corresponding":false,"raw_author_name":"Purvi Agrawal","raw_affiliation_strings":["Microsoft Corporation, India"],"affiliations":[{"raw_affiliation_string":"Microsoft Corporation, India","institution_ids":["https://openalex.org/I4210162141"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5065369619","display_name":"Rupesh Mehta","orcid":null},"institutions":[{"id":"https://openalex.org/I4210162141","display_name":"Microsoft (India)","ror":"https://ror.org/04ww0w091","country_code":"IN","type":"company","lineage":["https://openalex.org/I1290206253","https://openalex.org/I4210162141"]}],"countries":["IN"],"is_corresponding":false,"raw_author_name":"Rupesh Mehta","raw_affiliation_strings":["Microsoft Corporation, India"],"affiliations":[{"raw_affiliation_string":"Microsoft Corporation, India","institution_ids":["https://openalex.org/I4210162141"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":1,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":0.0,"has_fulltext":true,"fulltext_origin":"pdf","cited_by_count":0,"citation_normalized_percentile":{"value":0.0,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":0,"max":67},"biblio":{"volume":null,"issue":null,"first_page":"252","last_page":"259"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10028","display_name":"Topic Modeling","score":0.9986,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10028","display_name":"Topic Modeling","score":0.9986,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10201","display_name":"Speech Recognition and Synthesis","score":0.9978,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10181","display_name":"Natural Language Processing Techniques","score":0.9896,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/softmax-function","display_name":"Softmax function","score":0.72386587},{"id":"https://openalex.org/keywords/end-to-end-principle","display_name":"End-to-end principle","score":0.58275145},{"id":"https://openalex.org/keywords/word-error-rate","display_name":"Word error rate","score":0.44762158}],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.8581866},{"id":"https://openalex.org/C188441871","wikidata":"https://www.wikidata.org/wiki/Q7554146","display_name":"Softmax function","level":3,"score":0.72386587},{"id":"https://openalex.org/C137293760","wikidata":"https://www.wikidata.org/wiki/Q3621696","display_name":"Language model","level":2,"score":0.712588},{"id":"https://openalex.org/C118505674","wikidata":"https://www.wikidata.org/wiki/Q42586063","display_name":"Encoder","level":2,"score":0.58813345},{"id":"https://openalex.org/C74296488","wikidata":"https://www.wikidata.org/wiki/Q2527392","display_name":"End-to-end principle","level":2,"score":0.58275145},{"id":"https://openalex.org/C57273362","wikidata":"https://www.wikidata.org/wiki/Q576722","display_name":"Decoding methods","level":2,"score":0.5389109},{"id":"https://openalex.org/C519982507","wikidata":"https://www.wikidata.org/wiki/Q1568","display_name":"Hindi","level":2,"score":0.50050807},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.461911},{"id":"https://openalex.org/C90805587","wikidata":"https://www.wikidata.org/wiki/Q10944557","display_name":"Word (group theory)","level":2,"score":0.45102495},{"id":"https://openalex.org/C40969351","wikidata":"https://www.wikidata.org/wiki/Q3516228","display_name":"Word error rate","level":2,"score":0.44762158},{"id":"https://openalex.org/C50644808","wikidata":"https://www.wikidata.org/wiki/Q192776","display_name":"Artificial neural network","level":2,"score":0.4397034},{"id":"https://openalex.org/C204321447","wikidata":"https://www.wikidata.org/wiki/Q30642","display_name":"Natural language processing","level":1,"score":0.36548477},{"id":"https://openalex.org/C28490314","wikidata":"https://www.wikidata.org/wiki/Q189436","display_name":"Speech recognition","level":1,"score":0.35200053},{"id":"https://openalex.org/C11413529","wikidata":"https://www.wikidata.org/wiki/Q8366","display_name":"Algorithm","level":1,"score":0.17066374},{"id":"https://openalex.org/C41895202","wikidata":"https://www.wikidata.org/wiki/Q8162","display_name":"Linguistics","level":1,"score":0.0},{"id":"https://openalex.org/C138885662","wikidata":"https://www.wikidata.org/wiki/Q5891","display_name":"Philosophy","level":0,"score":0.0},{"id":"https://openalex.org/C111919701","wikidata":"https://www.wikidata.org/wiki/Q9135","display_name":"Operating system","level":1,"score":0.0}],"mesh":[],"locations_count":4,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/slt54892.2023.10022475","pdf_url":null,"source":{"id":"https://openalex.org/S4363605953","display_name":"2022 IEEE Spoken Language Technology Workshop (SLT)","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/2401.11645","pdf_url":"http://arxiv.org/pdf/2401.11645","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2401.11645","pdf_url":"https://arxiv.org/pdf/2401.11645","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":false,"landing_page_url":"https://api.datacite.org/dois/10.48550/arxiv.2401.11645","pdf_url":null,"source":{"id":"https://openalex.org/S4393179698","display_name":"DataCite API","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I4210145204","host_organization_name":"DataCite","host_organization_lineage":["https://openalex.org/I4210145204"],"host_organization_lineage_names":["DataCite"],"type":"metadata"},"license":null,"license_id":null,"version":null}],"best_oa_location":{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/2401.11645","pdf_url":"http://arxiv.org/pdf/2401.11645","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[{"score":0.79,"display_name":"Quality education","id":"https://metadata.un.org/sdg/4"}],"grants":[],"datasets":[],"versions":["https://openalex.org/W4319862672"],"referenced_works_count":29,"referenced_works":["https://openalex.org/W1501286448","https://openalex.org/W1828163288","https://openalex.org/W1978660892","https://openalex.org/W2002984713","https://openalex.org/W2025198378","https://openalex.org/W2094035326","https://openalex.org/W2120209245","https://openalex.org/W2127982613","https://openalex.org/W2294108103","https://openalex.org/W2395106899","https://openalex.org/W2587080466","https://openalex.org/W2633221078","https://openalex.org/W2963303951","https://openalex.org/W2964002616","https://openalex.org/W2964084166","https://openalex.org/W2971840980","https://openalex.org/W3007227084","https://openalex.org/W3016057683","https://openalex.org/W3094667432","https://openalex.org/W3095184753","https://openalex.org/W3095311338","https://openalex.org/W3096032230","https://openalex.org/W3097338456","https://openalex.org/W3163865502","https://openalex.org/W3195874849","https://openalex.org/W3198047825","https://openalex.org/W4287726212","https://openalex.org/W4295312788","https://openalex.org/W4297727296"],"related_works":["https://openalex.org/W4290708361","https://openalex.org/W4221142855","https://openalex.org/W2949174760","https://openalex.org/W2916997151","https://openalex.org/W2594897229","https://openalex.org/W2268150819","https://openalex.org/W2151348424","https://openalex.org/W2129812225","https://openalex.org/W2050138804","https://openalex.org/W1566315437"],"abstract_inverted_index":{"Even":[0],"with":[1,79,129],"several":[2],"advancements":[3],"in":[4],"multilingual":[5,26],"modeling,":[6],"it":[7,96],"is":[8],"challenging":[9],"to":[10],"recognize":[11,53],"multiple":[12],"languages":[13,55],"using":[14],"a":[15,40,48,87,98,108],"single":[16,49,99,109],"neural":[17,50],"model,":[18],"without":[19,63],"knowing":[20],"the":[21,29,32,61,68,91,104,119,125],"input":[22,33,66],"language":[23,65],"and":[24,56,76,113,132,142],"most":[25],"models":[27],"assume":[28],"availability":[30],"of":[31],"language.":[34],"In":[35],"this":[36],"work,":[37],"we":[38],"propose":[39],"novel":[41],"bilingual":[42,127],"end-to-end":[43],"(E2E)":[44],"modeling":[45],"approach,":[46],"where":[47],"model":[51,72],"can":[52],"both":[54],"also":[57,114],"support":[58],"switching":[59,117],"between":[60,118],"languages,":[62],"any":[64],"from":[67],"user.":[69],"The":[70,121],"proposed":[71,122],"has":[73],"shared":[74],"encoder":[75],"prediction":[77],"networks,":[78],"language-specific":[80,92],"joint":[81],"networks":[82],"that":[83],"are":[84,94],"combined":[85],"via":[86],"self-attention":[88],"mechanism.":[89],"As":[90],"posteriors":[93],"combined,":[95],"produces":[97],"posterior":[100],"probability":[101],"over":[102],"all":[103],"output":[105],"symbols,":[106],"enabling":[107],"beam":[110],"search":[111],"decoding":[112],"allowing":[115],"dynamic":[116],"languages.":[120],"approach":[123],"outperforms":[124],"conventional":[126],"baseline":[128],"13.3%,":[130],"8.23%":[131],"1.3%":[133],"word":[134],"error":[135],"rate":[136],"relative":[137],"reduction":[138],"on":[139],"Hindi,":[140],"English":[141],"code-mixed":[143],"test":[144],"sets,":[145],"respectively.":[146]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4319862672","counts_by_year":[],"updated_date":"2025-01-01T20:36:25.606391","created_date":"2023-02-11"}