{"id":"https://openalex.org/W2587221786","doi":"https://doi.org/10.1109/slt.2016.7846334","title":"Automated structure discovery and parameter tuning of neural network language model based on evolution strategy","display_name":"Automated structure discovery and parameter tuning of neural network language model based on evolution strategy","publication_year":2016,"publication_date":"2016-12-01","ids":{"openalex":"https://openalex.org/W2587221786","doi":"https://doi.org/10.1109/slt.2016.7846334","mag":"2587221786"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/slt.2016.7846334","pdf_url":null,"source":{"id":"https://openalex.org/S4363605953","display_name":"2022 IEEE Spoken Language Technology Workshop (SLT)","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5101463708","display_name":"Tomohiro Tanaka","orcid":"https://orcid.org/0000-0002-9741-5573"},"institutions":[{"id":"https://openalex.org/I114531698","display_name":"Tokyo Institute of Technology","ror":"https://ror.org/0112mx960","country_code":"JP","type":"funder","lineage":["https://openalex.org/I114531698"]}],"countries":["JP"],"is_corresponding":false,"raw_author_name":"Tomohiro Tanaka","raw_affiliation_strings":["Tokyo Institute of Technology, Japan"],"affiliations":[{"raw_affiliation_string":"Tokyo Institute of Technology, Japan","institution_ids":["https://openalex.org/I114531698"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5087290011","display_name":"Takafumi Moriya","orcid":"https://orcid.org/0000-0003-1942-7250"},"institutions":[{"id":"https://openalex.org/I2251713219","display_name":"NTT (Japan)","ror":"https://ror.org/00berct97","country_code":"JP","type":"funder","lineage":["https://openalex.org/I2251713219"]}],"countries":["JP"],"is_corresponding":false,"raw_author_name":"Takafumi Moriya","raw_affiliation_strings":["NTT Media Intelligence Laboratories, NTT Corporation, Japan"],"affiliations":[{"raw_affiliation_string":"NTT Media Intelligence Laboratories, NTT Corporation, Japan","institution_ids":["https://openalex.org/I2251713219"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5103015161","display_name":"Takahiro Shinozaki","orcid":"https://orcid.org/0000-0001-8114-8450"},"institutions":[{"id":"https://openalex.org/I114531698","display_name":"Tokyo Institute of Technology","ror":"https://ror.org/0112mx960","country_code":"JP","type":"funder","lineage":["https://openalex.org/I114531698"]}],"countries":["JP"],"is_corresponding":false,"raw_author_name":"Takahiro Shinozaki","raw_affiliation_strings":["Tokyo Institute of Technology, Japan"],"affiliations":[{"raw_affiliation_string":"Tokyo Institute of Technology, Japan","institution_ids":["https://openalex.org/I114531698"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5001291873","display_name":"Shinji Watanabe","orcid":"https://orcid.org/0000-0002-5970-8631"},"institutions":[{"id":"https://openalex.org/I4210159266","display_name":"Mitsubishi Electric (United States)","ror":"https://ror.org/053jnhe44","country_code":"US","type":"company","lineage":["https://openalex.org/I1306287861","https://openalex.org/I4210133125","https://openalex.org/I4210159266"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Shinji Watanabe","raw_affiliation_strings":["Mitsubishi Electric Research Laboratories, USA"],"affiliations":[{"raw_affiliation_string":"Mitsubishi Electric Research Laboratories, USA","institution_ids":["https://openalex.org/I4210159266"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5087554069","display_name":"Takaaki Hori","orcid":"https://orcid.org/0000-0003-4560-8039"},"institutions":[{"id":"https://openalex.org/I4210159266","display_name":"Mitsubishi Electric (United States)","ror":"https://ror.org/053jnhe44","country_code":"US","type":"company","lineage":["https://openalex.org/I1306287861","https://openalex.org/I4210133125","https://openalex.org/I4210159266"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Takaaki Hori","raw_affiliation_strings":["Mitsubishi Electric Research Laboratories, USA"],"affiliations":[{"raw_affiliation_string":"Mitsubishi Electric Research Laboratories, USA","institution_ids":["https://openalex.org/I4210159266"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5070418792","display_name":"Kevin Duh","orcid":"https://orcid.org/0000-0001-8107-4383"},"institutions":[{"id":"https://openalex.org/I145311948","display_name":"Johns Hopkins University","ror":"https://ror.org/00za53h95","country_code":"US","type":"funder","lineage":["https://openalex.org/I145311948"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Kevin Duh","raw_affiliation_strings":["Johns Hopkins University, USA"],"affiliations":[{"raw_affiliation_string":"Johns Hopkins University, USA","institution_ids":["https://openalex.org/I145311948"]}]}],"institution_assertions":[],"countries_distinct_count":2,"institutions_distinct_count":4,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":0.437,"has_fulltext":true,"fulltext_origin":"ngrams","cited_by_count":16,"citation_normalized_percentile":{"value":0.803985,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":89,"max":90},"biblio":{"volume":null,"issue":null,"first_page":"665","last_page":"671"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10320","display_name":"Neural Networks and Applications","score":0.9988,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10320","display_name":"Neural Networks and Applications","score":0.9988,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10201","display_name":"Speech Recognition and Synthesis","score":0.9986,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11447","display_name":"Blind Source Separation Techniques","score":0.9959,"subfield":{"id":"https://openalex.org/subfields/1711","display_name":"Signal Processing"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/robustness","display_name":"Robustness","score":0.6543313},{"id":"https://openalex.org/keywords/cma-es","display_name":"CMA-ES","score":0.6472157}],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.78936195},{"id":"https://openalex.org/C63479239","wikidata":"https://www.wikidata.org/wiki/Q7353546","display_name":"Robustness (evolution)","level":3,"score":0.6543313},{"id":"https://openalex.org/C205555498","wikidata":"https://www.wikidata.org/wiki/Q505588","display_name":"CMA-ES","level":4,"score":0.6472157},{"id":"https://openalex.org/C207002847","wikidata":"https://www.wikidata.org/wiki/Q2912857","display_name":"Evolution strategy","level":3,"score":0.6288574},{"id":"https://openalex.org/C50644808","wikidata":"https://www.wikidata.org/wiki/Q192776","display_name":"Artificial neural network","level":2,"score":0.5888448},{"id":"https://openalex.org/C147168706","wikidata":"https://www.wikidata.org/wiki/Q1457734","display_name":"Recurrent neural network","level":3,"score":0.55695456},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.49167377},{"id":"https://openalex.org/C137293760","wikidata":"https://www.wikidata.org/wiki/Q3621696","display_name":"Language model","level":2,"score":0.45885897},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.4365254},{"id":"https://openalex.org/C57273362","wikidata":"https://www.wikidata.org/wiki/Q576722","display_name":"Decoding methods","level":2,"score":0.4315561},{"id":"https://openalex.org/C159149176","wikidata":"https://www.wikidata.org/wiki/Q14489129","display_name":"Evolutionary algorithm","level":2,"score":0.4014834},{"id":"https://openalex.org/C11413529","wikidata":"https://www.wikidata.org/wiki/Q8366","display_name":"Algorithm","level":1,"score":0.3278497},{"id":"https://openalex.org/C55493867","wikidata":"https://www.wikidata.org/wiki/Q7094","display_name":"Biochemistry","level":1,"score":0.0},{"id":"https://openalex.org/C185592680","wikidata":"https://www.wikidata.org/wiki/Q2329","display_name":"Chemistry","level":0,"score":0.0},{"id":"https://openalex.org/C104317684","wikidata":"https://www.wikidata.org/wiki/Q7187","display_name":"Gene","level":2,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/slt.2016.7846334","pdf_url":null,"source":{"id":"https://openalex.org/S4363605953","display_name":"2022 IEEE Spoken Language Technology Workshop (SLT)","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":36,"referenced_works":["https://openalex.org/W1522301498","https://openalex.org/W1524333225","https://openalex.org/W1529817821","https://openalex.org/W1575384945","https://openalex.org/W1579744901","https://openalex.org/W169677408","https://openalex.org/W179875071","https://openalex.org/W1801780804","https://openalex.org/W1810943226","https://openalex.org/W1932968309","https://openalex.org/W1970689298","https://openalex.org/W1970789124","https://openalex.org/W2008499862","https://openalex.org/W2064675550","https://openalex.org/W2083296885","https://openalex.org/W2095705004","https://openalex.org/W2107878631","https://openalex.org/W2125336414","https://openalex.org/W2131241448","https://openalex.org/W2133750237","https://openalex.org/W2136848157","https://openalex.org/W2138537392","https://openalex.org/W2142027531","https://openalex.org/W2144328179","https://openalex.org/W2151965738","https://openalex.org/W2164960030","https://openalex.org/W2166843422","https://openalex.org/W2288471100","https://openalex.org/W2318382414","https://openalex.org/W2396464458","https://openalex.org/W2402268235","https://openalex.org/W2964121744","https://openalex.org/W2998704965","https://openalex.org/W3007384386","https://openalex.org/W4285719527","https://openalex.org/W6908809"],"related_works":["https://openalex.org/W4212806423","https://openalex.org/W3087341323","https://openalex.org/W2552260697","https://openalex.org/W2510724351","https://openalex.org/W2465356436","https://openalex.org/W2078076985","https://openalex.org/W1994560683","https://openalex.org/W1987433714","https://openalex.org/W1579744901","https://openalex.org/W1492325323"],"abstract_inverted_index":{"Long":[0],"short-term":[1],"memory":[2],"(LSTM)":[3],"recurrent":[4],"neural":[5],"network":[6,24],"based":[7,89],"language":[8],"models":[9],"are":[10],"known":[11],"to":[12,22,117],"improve":[13],"speech":[14],"recognition":[15,82],"performance.":[16,83],"However,":[17],"significant":[18],"effort":[19],"is":[20],"required":[21],"optimize":[23],"structures":[25],"and":[26,94,105,113],"training":[27],"configurations.":[28],"In":[29,40],"this":[30],"study,":[31],"we":[32,42],"automate":[33],"the":[34,44],"development":[35],"process":[36],"using":[37,86],"evolutionary":[38],"algorithms.":[39],"particular,":[41],"apply":[43],"covariance":[45],"matrix":[46],"adaptation-evolution":[47],"strategy":[48],"(CMA-ES),":[49],"which":[50],"has":[51],"demonstrated":[52],"robustness":[53],"in":[54],"other":[55],"black":[56],"box":[57],"hyper-parameter":[58],"optimization":[59,64],"problems.":[60],"By":[61],"flexibly":[62],"allowing":[63],"of":[65],"various":[66],"meta-parameters":[67],"including":[68],"layer":[69],"wise":[70],"unit":[71],"types,":[72],"our":[73],"method":[74],"automatically":[75],"finds":[76],"a":[77,87],"configuration":[78],"that":[79],"gives":[80],"improved":[81],"Further,":[84],"by":[85],"Pareto":[88],"multi-objective":[90],"CMA-ES,":[91],"both":[92],"WER":[93,104,123],"computational":[95,106],"time":[96,107],"were":[97,111],"reduced":[98],"jointly:":[99],"after":[100],"10":[101],"generations,":[102],"relative":[103],"reductions":[108],"for":[109],"decoding":[110],"4.1%":[112],"22.7%":[114],"respectively,":[115],"compared":[116],"an":[118],"initial":[119],"baseline":[120],"system":[121],"whose":[122],"was":[124],"8.7%.":[125]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W2587221786","counts_by_year":[{"year":2023,"cited_by_count":3},{"year":2022,"cited_by_count":3},{"year":2021,"cited_by_count":3},{"year":2020,"cited_by_count":3},{"year":2019,"cited_by_count":2},{"year":2018,"cited_by_count":1},{"year":2017,"cited_by_count":1}],"updated_date":"2025-03-18T07:39:44.399517","created_date":"2017-02-17"}