{"id":"https://openalex.org/W2586813637","doi":"https://doi.org/10.1109/slt.2016.7846273","title":"Voice search language model adaptation using contextual information","display_name":"Voice search language model adaptation using contextual information","publication_year":2016,"publication_date":"2016-12-01","ids":{"openalex":"https://openalex.org/W2586813637","doi":"https://doi.org/10.1109/slt.2016.7846273","mag":"2586813637"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/slt.2016.7846273","pdf_url":null,"source":{"id":"https://openalex.org/S4363605953","display_name":"2022 IEEE Spoken Language Technology Workshop (SLT)","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5063409354","display_name":"Justin Scheiner","orcid":null},"institutions":[{"id":"https://openalex.org/I1291425158","display_name":"Google (United States)","ror":"https://ror.org/00njsd438","country_code":"US","type":"funder","lineage":["https://openalex.org/I1291425158","https://openalex.org/I4210128969"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Justin Scheiner","raw_affiliation_strings":["Google Inc."],"affiliations":[{"raw_affiliation_string":"Google Inc.","institution_ids":["https://openalex.org/I1291425158"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5037414673","display_name":"Ian Williams","orcid":"https://orcid.org/0000-0001-5970-0739"},"institutions":[{"id":"https://openalex.org/I1291425158","display_name":"Google (United States)","ror":"https://ror.org/00njsd438","country_code":"US","type":"funder","lineage":["https://openalex.org/I1291425158","https://openalex.org/I4210128969"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Ian Williams","raw_affiliation_strings":["Google Inc."],"affiliations":[{"raw_affiliation_string":"Google Inc.","institution_ids":["https://openalex.org/I1291425158"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5081890177","display_name":"Petar Aleksic","orcid":null},"institutions":[{"id":"https://openalex.org/I1291425158","display_name":"Google (United States)","ror":"https://ror.org/00njsd438","country_code":"US","type":"funder","lineage":["https://openalex.org/I1291425158","https://openalex.org/I4210128969"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Petar Aleksic","raw_affiliation_strings":["Google Inc."],"affiliations":[{"raw_affiliation_string":"Google Inc.","institution_ids":["https://openalex.org/I1291425158"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":1,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":0.655,"has_fulltext":true,"fulltext_origin":"ngrams","cited_by_count":19,"citation_normalized_percentile":{"value":0.730804,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":90,"max":91},"biblio":{"volume":"4","issue":null,"first_page":"253","last_page":"257"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10201","display_name":"Speech Recognition and Synthesis","score":0.9998,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10201","display_name":"Speech Recognition and Synthesis","score":0.9998,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10181","display_name":"Natural Language Processing Techniques","score":0.9993,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11309","display_name":"Music and Audio Processing","score":0.9966,"subfield":{"id":"https://openalex.org/subfields/1711","display_name":"Signal Processing"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/contextual-design","display_name":"Contextual design","score":0.6672334},{"id":"https://openalex.org/keywords/spoken-language","display_name":"Spoken Language","score":0.5485462},{"id":"https://openalex.org/keywords/context-model","display_name":"Context model","score":0.45454782},{"id":"https://openalex.org/keywords/n-gram","display_name":"n-gram","score":0.44377533}],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.8930143},{"id":"https://openalex.org/C137293760","wikidata":"https://www.wikidata.org/wiki/Q3621696","display_name":"Language model","level":2,"score":0.7346536},{"id":"https://openalex.org/C71611378","wikidata":"https://www.wikidata.org/wiki/Q5165191","display_name":"Contextual design","level":3,"score":0.6672334},{"id":"https://openalex.org/C177264268","wikidata":"https://www.wikidata.org/wiki/Q1514741","display_name":"Set (abstract data type)","level":2,"score":0.58307076},{"id":"https://openalex.org/C2779343474","wikidata":"https://www.wikidata.org/wiki/Q3109175","display_name":"Context (archaeology)","level":2,"score":0.5788918},{"id":"https://openalex.org/C2776230583","wikidata":"https://www.wikidata.org/wiki/Q1322198","display_name":"Spoken language","level":2,"score":0.5485462},{"id":"https://openalex.org/C2779530757","wikidata":"https://www.wikidata.org/wiki/Q1207505","display_name":"Quality (philosophy)","level":2,"score":0.5139727},{"id":"https://openalex.org/C2778355321","wikidata":"https://www.wikidata.org/wiki/Q17079427","display_name":"Identity (music)","level":2,"score":0.5109531},{"id":"https://openalex.org/C204321447","wikidata":"https://www.wikidata.org/wiki/Q30642","display_name":"Natural language processing","level":1,"score":0.47382772},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.46255484},{"id":"https://openalex.org/C139807058","wikidata":"https://www.wikidata.org/wiki/Q352374","display_name":"Adaptation (eye)","level":2,"score":0.4611836},{"id":"https://openalex.org/C28490314","wikidata":"https://www.wikidata.org/wiki/Q189436","display_name":"Speech recognition","level":1,"score":0.45528162},{"id":"https://openalex.org/C183322885","wikidata":"https://www.wikidata.org/wiki/Q17007702","display_name":"Context model","level":3,"score":0.45454782},{"id":"https://openalex.org/C117884012","wikidata":"https://www.wikidata.org/wiki/Q94489","display_name":"n-gram","level":3,"score":0.44377533},{"id":"https://openalex.org/C192028432","wikidata":"https://www.wikidata.org/wiki/Q845739","display_name":"Query language","level":2,"score":0.42308438},{"id":"https://openalex.org/C23123220","wikidata":"https://www.wikidata.org/wiki/Q816826","display_name":"Information retrieval","level":1,"score":0.29190725},{"id":"https://openalex.org/C151730666","wikidata":"https://www.wikidata.org/wiki/Q7205","display_name":"Paleontology","level":1,"score":0.0},{"id":"https://openalex.org/C138885662","wikidata":"https://www.wikidata.org/wiki/Q5891","display_name":"Philosophy","level":0,"score":0.0},{"id":"https://openalex.org/C121332964","wikidata":"https://www.wikidata.org/wiki/Q413","display_name":"Physics","level":0,"score":0.0},{"id":"https://openalex.org/C111472728","wikidata":"https://www.wikidata.org/wiki/Q9471","display_name":"Epistemology","level":1,"score":0.0},{"id":"https://openalex.org/C2781238097","wikidata":"https://www.wikidata.org/wiki/Q175026","display_name":"Object (grammar)","level":2,"score":0.0},{"id":"https://openalex.org/C24890656","wikidata":"https://www.wikidata.org/wiki/Q82811","display_name":"Acoustics","level":1,"score":0.0},{"id":"https://openalex.org/C120665830","wikidata":"https://www.wikidata.org/wiki/Q14620","display_name":"Optics","level":1,"score":0.0},{"id":"https://openalex.org/C86803240","wikidata":"https://www.wikidata.org/wiki/Q420","display_name":"Biology","level":0,"score":0.0},{"id":"https://openalex.org/C199360897","wikidata":"https://www.wikidata.org/wiki/Q9143","display_name":"Programming language","level":1,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/slt.2016.7846273","pdf_url":null,"source":{"id":"https://openalex.org/S4363605953","display_name":"2022 IEEE Spoken Language Technology Workshop (SLT)","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[{"score":0.82,"display_name":"Quality education","id":"https://metadata.un.org/sdg/4"}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":12,"referenced_works":["https://openalex.org/W1561253126","https://openalex.org/W1582482241","https://openalex.org/W158861739","https://openalex.org/W1604697534","https://openalex.org/W165283731","https://openalex.org/W2057169877","https://openalex.org/W2097003869","https://openalex.org/W2169187092","https://openalex.org/W2296545762","https://openalex.org/W2395440424","https://openalex.org/W2403440562","https://openalex.org/W2509515645"],"related_works":["https://openalex.org/W3216427120","https://openalex.org/W3199933899","https://openalex.org/W2657488695","https://openalex.org/W2596633139","https://openalex.org/W2475568343","https://openalex.org/W2143731190","https://openalex.org/W2088439981","https://openalex.org/W2080753128","https://openalex.org/W2008630163","https://openalex.org/W1995005751"],"abstract_inverted_index":{"It":[0],"has":[1],"been":[2],"shown":[3],"that":[4,73,85,175],"automatic":[5],"speech":[6],"recognition":[7],"(ASR)":[8],"system":[9,95],"quality":[10,146],"can":[11,89],"be":[12,90],"improved":[13],"by":[14,100],"augmenting":[15],"n-gram":[16,102],"language":[17,79,103],"models":[18],"with":[19,60,177,189],"contextual":[20,35,62,87,110,168],"information":[21,63,111],"[1][2].":[22],"In":[23,170],"the":[24,52,78,109,114],"voice":[25,116],"search":[26,117],"domain,":[27],"there":[28],"are":[29,45],"a":[30,38,136,182],"large":[31],"number":[32,183],"of":[33,42,51,56,124,138,150,163,167,184],"useful":[34],"signals":[36,44,58,88],"for":[37,113],"given":[39],"query.":[40],"Some":[41],"these":[43,57,86,148],"speaker":[46,48],"location,":[47],"identity,":[49],"time":[50],"query,":[53],"etc.":[54],"Each":[55],"comes":[59],"relevant":[61,112],"(e.g.":[64],"location":[65,126],"specific":[66],"entities,":[67],"favorite":[68],"queries,":[69],"recent":[70],"popular":[71],"queries)":[72],"is":[74,98,155],"not":[75],"included":[76],"in":[77,158],"model's":[80],"training":[81],"data.":[82],"We":[83,119,134],"show":[84],"used":[91,142],"to":[92,143,156,181],"improve":[93,144],"ASR":[94,145],"quality.":[96],"This":[97],"achieved":[99],"adjusting":[101],"model":[104],"probabilities":[105],"on-the-fly":[106],"based":[107],"on":[108],"current":[115],"request.":[118],"analyze":[120],"three":[121],"example":[122],"sources":[123,149,166],"context:":[125],"context,":[127],"previously":[128],"entered":[129],"typed":[130],"and":[131,191],"spoken":[132],"queries.":[133],"present":[135,192],"set":[137],"approaches":[139],"we":[140,172],"have":[141],"using":[147],"context.":[151],"Our":[152],"main":[153],"objective":[154],"automatically,":[157],"real":[159],"time,":[160],"take":[161],"advantage":[162],"all":[164],"available":[165],"information.":[169],"addition,":[171],"investigate":[173],"challenges":[174],"come":[176],"applying":[178],"our":[179],"approach":[180],"languages":[185,188],"(unsegmented":[186],"languages,":[187],"diacritics)":[190],"solutions":[193],"used.":[194]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W2586813637","counts_by_year":[{"year":2023,"cited_by_count":2},{"year":2021,"cited_by_count":5},{"year":2020,"cited_by_count":6},{"year":2019,"cited_by_count":1},{"year":2018,"cited_by_count":4},{"year":2017,"cited_by_count":1}],"updated_date":"2025-03-24T08:00:25.681259","created_date":"2017-02-17"}